import gradio as gr import requests from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer from PIL import Image import torch import io import os from typing import Tuple # Load Hugging Face token HF_API_KEY = os.getenv("HF_API_KEY") or "your_hf_token_here" if not HF_API_KEY: raise ValueError("HF_API_KEY is not set.") # Hugging Face inference API endpoint IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"} device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Translation model (Tamil to English) translator_model = "Helsinki-NLP/opus-mt-mul-en" translator_tokenizer = MarianTokenizer.from_pretrained(translator_model) translator = MarianMTModel.from_pretrained(translator_model).to(device) # Text generation model text_model = "EleutherAI/gpt-neo-1.3B" text_tokenizer = AutoTokenizer.from_pretrained(text_model) text_generator = AutoModelForCausalLM.from_pretrained(text_model).to(device) text_tokenizer.pad_token = text_tokenizer.eos_token # Step 1: Tamil to English translation def translate_tamil_to_english(text: str) -> str: inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device) outputs = translator.generate(**inputs) return translator_tokenizer.decode(outputs[0], skip_special_tokens=True) # Step 2: Generate creative text def generate_text(prompt: str) -> str: inputs = text_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device) outputs = text_generator.generate(**inputs, max_length=100, num_return_sequences=1) return text_tokenizer.decode(outputs[0], skip_special_tokens=True) # Step 3: Generate image def generate_image(prompt: str) -> Image.Image: response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt}) if response.status_code == 200 and response.headers.get("content-type", "").startswith("image"): return Image.open(io.BytesIO(response.content)) else: return Image.new("RGB", (512, 512), color="gray") # Master function def process_input(tamil_text: str) -> Tuple[str, str, Image.Image]: english = translate_tamil_to_english(tamil_text) creative = generate_text(english) image = generate_image(english) return english, creative, image # Gradio UI using Blocks API with gr.Blocks() as demo: gr.Markdown("## 🌍 Tamil to English | Text & Image Generator") with gr.Row(): tamil_input = gr.Textbox(label="📝 Enter Tamil Text", placeholder="உங்கள் உரையை இங்கே உள்ளிடவும்...", lines=2) generate_btn = gr.Button("Translate & Generate") english_output = gr.Textbox(label="🇬🇧 Translated English") creative_output = gr.Textbox(label="✨ Generated Text") image_output = gr.Image(label="🖼️ Generated Image", type="pil") generate_btn.click(fn=process_input, inputs=tamil_input, outputs=[english_output, creative_output, image_output]) demo.launch()