# Install the required libraries # pip install transformers gradio Pillow requests import os import requests from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer from PIL import Image, ImageDraw import io import gradio as gr import torch # Detect if GPU is available device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load the MarianMT model and tokenizer for translation (Tamil to English) model_name = "Helsinki-NLP/opus-mt-mul-en" translation_model = MarianMTModel.from_pretrained(model_name).to(device) translation_tokenizer = MarianTokenizer.from_pretrained(model_name) # Load GPT-Neo for creative text generation text_generation_model_name = "EleutherAI/gpt-neo-1.3B" text_generation_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name).to(device) text_generation_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name) # Add padding token to GPT-Neo tokenizer if not present if text_generation_tokenizer.pad_token is None: text_generation_tokenizer.add_special_tokens({'pad_token': '[PAD]'}) # Set your Hugging Face API key os.environ['HF_API_KEY'] = 'Your_HF_TOKEN' # Replace with your actual API key api_key = os.getenv('HF_API_KEY') if api_key is None: raise ValueError("Hugging Face API key is not set. Please set it in your environment.") headers = {"Authorization": f"Bearer {api_key}"} # Define the API URL for image generation (replace with actual model URL) API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" # Replace with a valid image generation model # Query Hugging Face API to generate image with error handling def query(payload): response = requests.post(API_URL, headers=headers, json=payload) if response.status_code != 200: print(f"Error: Received status code {response.status_code}") print(f"Response: {response.text}") return None return response.content # Translate Tamil text to English def translate_text(tamil_text): inputs = translation_tokenizer(tamil_text, return_tensors="pt", padding=True, truncation=True).to(device) translated_tokens = translation_model.generate(**inputs) translation = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True) return translation # Generate an image based on the translated text with error handling def generate_image(prompt): image_bytes = query({"inputs": prompt}) if image_bytes is None: # Return a blank image with error message error_img = Image.new('RGB', (300, 300), color=(255, 0, 0)) d = ImageDraw.Draw(error_img) d.text((10, 150), "Image Generation Failed", fill=(255, 255, 255)) return error_img try: image = Image.open(io.BytesIO(image_bytes)) return image except Exception as e: print(f"Error: {e}") # Return an error image in case of failure error_img = Image.new('RGB', (300, 300), color=(255, 0, 0)) d = ImageDraw.Draw(error_img) d.text((10, 150), "Invalid Image Data", fill=(255, 255, 255)) return error_img # Generate creative text based on the translated English text def generate_creative_text(translated_text): inputs = text_generation_tokenizer(translated_text, return_tensors="pt", padding=True, truncation=True).to(device) generated_tokens = text_generation_model.generate(**inputs, max_length=100) creative_text = text_generation_tokenizer.decode(generated_tokens[0], skip_special_tokens=True) return creative_text # Function to handle the full workflow def translate_generate_image_and_text(tamil_text): # Step 1: Translate Tamil to English translated_text = translate_text(tamil_text) # Step 2: Generate an image from the translated text image = generate_image(translated_text) # Step 3: Generate creative text from the translated text creative_text = generate_creative_text(translated_text) return translated_text, creative_text, image # Create a visually appealing Gradio interface css = """ #transart-title { font-size: 2.5em; font-weight: bold; color: #4CAF50; text-align: center; margin-bottom: 10px; } #transart-subtitle { font-size: 1.25em; text-align: center; color: #555555; margin-bottom: 20px; } body { background-color: #f0f0f5; } .gradio-container { font-family: 'Arial', sans-serif; } """ # Custom HTML for title and subtitle (can be displayed in Markdown) title_markdown = """ #
TransArt
###
Tamil to English Translation, Creative Text & Image Generation
""" # Gradio interface with customized layout and aesthetics with gr.Blocks(css=css) as interface: gr.Markdown(title_markdown) # Title and subtitle in Markdown with gr.Row(): with gr.Column(): tamil_input = gr.Textbox(label="Enter Tamil Text", placeholder="Type Tamil text here...", lines=3) # Input for Tamil text with gr.Column(): translated_output = gr.Textbox(label="Translated Text", interactive=False) # Output for translated text creative_text_output = gr.Textbox(label="Creative Generated Text", interactive=False) # Output for creative text generated_image_output = gr.Image(label="Generated Image") # Output for generated image gr.Button("Generate").click(fn=translate_generate_image_and_text, inputs=tamil_input, outputs=[translated_output, creative_text_output, generated_image_output]) # Launch the Gradio app interface.launch(debug=True, server_name="0.0.0.0")