import gradio as gr from transformers import pipeline from diffusers import StableDiffusionPipeline import torch import os HF_TOKEN = os.getenv("HF_TOKEN") if HF_TOKEN is None: raise ValueError("Set HF_TOKEN in env variables.") device = "cuda" if torch.cuda.is_available() else "cpu" # ✅ Use multilingual model that supports Tamil→English translator = pipeline( "translation", model="Helsinki-NLP/opus-mt-mul-en", use_auth_token=HF_TOKEN ) generator = pipeline("text-generation", model="gpt2") image_pipe = StableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", use_auth_token=HF_TOKEN, torch_dtype=torch.float16 if device == "cuda" else torch.float32 ) image_pipe = image_pipe.to(device) def generate_image_from_tamil(tamil_input): translated = translator(tamil_input, max_length=100)[0]['translation_text'] generated = generator(translated, max_length=50, num_return_sequences=1)[0]['generated_text'].strip() image = image_pipe(generated).images[0] return translated, generated, image iface = gr.Interface( fn=generate_image_from_tamil, inputs=gr.Textbox(lines=2, label="Enter Tamil Text"), outputs=[gr.Textbox(label="Translated English Text"), gr.Textbox(label="Generated English Prompt"), gr.Image(label="Generated Image")], title="Tamil→Image Generator", description="Translate Tamil → English, generate prompt → create image.", allow_flagging="never" ) iface.launch()