import gradio as gr from transformers import pipeline from diffusers import StableDiffusionPipeline import torch import os # 1. Use Hugging Face token securely HF_TOKEN = os.getenv("HF_TOKEN", None) # 2. Set device device = "cuda" if torch.cuda.is_available() else "cpu" # 3. Load translator (Tamil → English using multilingual model) try: translator = pipeline( "translation", model="Helsinki-NLP/opus-mt-mul-en", use_auth_token=HF_TOKEN ) except Exception as e: translator = None print(f"Error loading translator: {e}") # 4. Load GPT2 for English text generation try: generator = pipeline("text-generation", model="gpt2") except Exception as e: generator = None print(f"Error loading GPT2: {e}") # 5. Load Stable Diffusion for image generation try: image_pipe = StableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", use_auth_token=HF_TOKEN, torch_dtype=torch.float16 if device == "cuda" else torch.float32 ).to(device) except Exception as e: image_pipe = None print(f"Error loading Stable Diffusion: {e}") # 6. Full pipeline function with safe error handling def generate_image_from_tamil(tamil_text): if not translator or not generator or not image_pipe: return "Model load error", "Model load error", None try: translated = translator(tamil_text, max_length=100)[0]['translation_text'] prompt = generator(translated, max_length=50, num_return_sequences=1)[0]['generated_text'] image = image_pipe(prompt).images[0] return translated, prompt, image except Exception as e: return f"Translation/Image generation error: {str(e)}", "", None # 7. Gradio UI iface = gr.Interface( fn=generate_image_from_tamil, inputs=gr.Textbox(lines=2, label="Enter Tamil Text"), outputs=[ gr.Textbox(label="Translated English Text"), gr.Textbox(label="Generated Prompt"), gr.Image(label="Generated Image") ], title="Tamil to Image Generator", description="Translate Tamil ➜ Generate English Text ➜ Create Image" ) iface.launch()