import os import gradio as gr from transformers import pipeline from diffusers import StableDiffusionPipeline import torch HF_TOKEN = os.getenv("HF_TOKEN") # 1. Tamil to English translator (public model, no token required) translator = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en") # 2. English text generator (GPT-2, public model, no token required) generator = pipeline("text-generation", model="gpt2") # 3. Stable Diffusion image generator (needs token) device = "cuda" if torch.cuda.is_available() else "cpu" image_pipe = StableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", use_auth_token=HF_TOKEN, torch_dtype=torch.float16 if device == "cuda" else torch.float32 ) image_pipe = image_pipe.to(device) def generate_image_from_tamil(tamil_text): # Translate Tamil → English translated = translator(tamil_text, max_length=100)[0]['translation_text'] # Generate English text from translated sentence generated = generator(translated, max_length=50, num_return_sequences=1)[0]['generated_text'] # Generate image from generated English text image = image_pipe(generated).images[0] return translated, generated, image # Create Gradio interface iface = gr.Interface( fn=generate_image_from_tamil, inputs=gr.Textbox(lines=2, label="Enter Tamil Text"), outputs=[ gr.Textbox(label="Translated English Text"), gr.Textbox(label="Generated English Prompt"), gr.Image(label="Generated Image") ], title="Tamil Text to English and Image Generator", description="Translate Tamil to English, generate English text, and create image using Stable Diffusion." ) # Launch Gradio app with public link iface.launch(share=True)