Arabic-Chatbot / app.py
2506minecraft's picture
Update app.py
8859b60 verified
raw
history blame
4.32 kB
import os
import logging
import asyncio
import numpy as np
import torch
import librosa
import soundfile as sf
from pydub import AudioSegment
from telegram import Update
from telegram.ext import ApplicationBuilder, MessageHandler, filters
from transformers import pipeline, AutoTokenizer, VitsModel
from huggingface_hub import login
# ===== تهيئة التوكن وتسجيل الدخول =====
login(token=os.getenv("HF_TOKEN"))
# ===== تهيئة نظام التسجيل =====
logging.basicConfig(
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
level=logging.INFO
)
logger = logging.getLogger(__name__)
# ===== تهيئة النماذج مع التعامل مع الأخطاء =====
try:
# 1. نموذج التعرف على الكلام
asr_pipeline = pipeline(
"automatic-speech-recognition",
model="jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
token=os.getenv("HF_TOKEN")
)
# 2. نموذج توليف الصوت
tts_tokenizer = AutoTokenizer.from_pretrained(
"facebook/mms-tts-ara",
token=os.getenv("HF_TOKEN")
)
tts_model = VitsModel.from_pretrained(
"facebook/mms-tts-ara",
token=os.getenv("HF_TOKEN")
)
except Exception as e:
logger.error(f"فشل تحميل النماذج: {str(e)}")
raise
# ===== دوال معالجة الصوت =====
def enhance_audio(input_path: str, output_path: str) -> bool:
try:
audio = AudioSegment.from_wav(input_path)
audio = audio.low_pass_filter(3000)
audio = audio.high_pass_filter(100)
audio = audio.normalize()
audio = audio.fade_in(150).fade_out(150)
audio.export(output_path, format="wav")
return True
except Exception as e:
logger.error(f"فشل تحسين الصوت: {str(e)}")
return False
async def speech_to_text(audio_path: str) -> str:
try:
audio, sr = librosa.load(audio_path, sr=16000)
sf.write("temp.wav", audio, sr)
result = asr_pipeline("temp.wav")
return result["text"]
except Exception as e:
logger.error(f"فشل التعرف على الصوت: {str(e)}")
return ""
async def generate_response(text: str) -> str:
try:
chatbot = pipeline(
"text-generation",
model="aubmindlab/aragpt2-base",
token=os.getenv("HF_TOKEN")
)
response = chatbot(
text,
max_length=100,
num_return_sequences=1,
pad_token_id=50256
)
return response[0]['generated_text']
except Exception as e:
logger.error(f"فشل توليد الرد: {str(e)}")
return "عذرًا، حدث خطأ في الرد."
async def text_to_speech(text: str) -> None:
try:
inputs = tts_tokenizer(text, return_tensors="pt")
with torch.no_grad():
output = tts_model(**inputs)
waveform = output.waveform[0].numpy()
sf.write("bot_response.wav", waveform, tts_model.config.sampling_rate)
except Exception as e:
logger.error(f"فشل تحويل النص إلى صوت: {str(e)}")
# ===== الدالة الرئيسية للمحادثة =====
async def process_voice(update: Update, context):
try:
voice_file = await update.message.voice.get_file()
await voice_file.download_to_drive("user_voice.ogg")
user_text = await speech_to_text("user_voice.ogg")
bot_response = await generate_response(user_text)
await text_to_speech(bot_response)
if enhance_audio("bot_response.wav", "bot_response_enhanced.wav"):
await update.message.reply_voice("bot_response_enhanced.wav")
else:
await update.message.reply_voice("bot_response.wav")
except Exception as e:
logger.error(f"خطأ رئيسي: {str(e)}")
await update.message.reply_text("⚠️ حدث خطأ غير متوقع.")
# ===== التشغيل الرئيسي مع إصلاح حدث اللوب =====
async def main():
application = ApplicationBuilder().token(os.getenv("TELEGRAM_TOKEN")).build()
application.add_handler(MessageHandler(filters.VOICE, process_voice))
await application.run_polling()
if __name__ == "__main__":
asyncio.run(main())