25b3nk commited on
Commit
1fde3e7
·
verified ·
1 Parent(s): a521e76

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -0
app.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import requests
3
+ from IPython.display import Markdown, display, update_display
4
+ from openai import OpenAI
5
+ from google.colab import drive
6
+ from huggingface_hub import login
7
+ from google.colab import userdata
8
+ from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer, BitsAndBytesConfig
9
+ import torch
10
+
11
+
12
+ LLAMA = "meta-llama/Meta-Llama-3.1-8B-Instruct"
13
+
14
+ hf_token = userdata.get('HF_TOKEN')
15
+ login(hf_token, add_to_git_credential=True)
16
+
17
+ system_message = "You are an assistant that produces datasets based on description provided."
18
+ user_input = "Film critics of 1900s"
19
+ user_prompt = f"Below is the description for which you need to generate dataset.\n{user_input}"
20
+
21
+ messages = [
22
+ {"role": "system", "content": system_message},
23
+ {"role": "user", "content": user_prompt}
24
+ ]
25
+
26
+ quant_config = BitsAndBytesConfig(
27
+ load_in_4bit=True,
28
+ bnb_4bit_use_double_quant=True,
29
+ bnb_4bit_compute_dtype=torch.bfloat16,
30
+ bnb_4bit_quant_type="nf4"
31
+ )
32
+
33
+ tokenizer = None
34
+ model = None
35
+ streamer = None
36
+
37
+
38
+ def run_llama(python):
39
+ if tokenizer is None:
40
+ tokenizer = AutoTokenizer.from_pretrained(LLAMA)
41
+ tokenizer.pad_token = tokenizer.eos_token
42
+ inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
43
+ # streamer = TextStreamer(tokenizer)
44
+ if model is None:
45
+ model = AutoModelForCausalLM.from_pretrained(LLAMA, device_map="auto", quantization_config=quant_config)
46
+ outputs = model.generate(inputs, max_new_tokens=2000, streamer=streamer)
47
+
48
+ response = tokenizer.decode(outputs[0])
49
+ return response
50
+
51
+
52
+ # Gradio Interface
53
+ iface = gr.Interface(
54
+ fn=run_llama,
55
+ inputs=gr.Textbox(label="Enter dataset description"),
56
+ outputs=gr.Markdown(label="Generated Dataset"),
57
+ title="Dataset Generator",
58
+ description="Describe the dataset you want to generate."
59
+ )
60
+
61
+ iface.launch(share=True, debug=True)