|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import importlib |
|
|
|
|
|
def class_for_name(module_name, class_name): |
|
|
|
m = importlib.import_module(module_name) |
|
return getattr(m, class_name) |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
groups=groups, |
|
bias=False, |
|
dilation=dilation, |
|
padding_mode="reflect", |
|
) |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution""" |
|
return nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
padding_mode="reflect", |
|
) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__( |
|
self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
groups=1, |
|
base_width=64, |
|
dilation=1, |
|
norm_layer=None, |
|
): |
|
super(BasicBlock, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
|
|
if groups != 1 or base_width != 64: |
|
raise ValueError("BasicBlock only supports groups=1 and base_width=64") |
|
if dilation > 1: |
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") |
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = norm_layer(planes, track_running_stats=False, affine=True) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = norm_layer(planes, track_running_stats=False, affine=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
|
|
expansion = 4 |
|
|
|
def __init__( |
|
self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
groups=1, |
|
base_width=64, |
|
dilation=1, |
|
norm_layer=None, |
|
): |
|
super(Bottleneck, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
|
|
width = int(planes * (base_width / 64.0)) * groups |
|
|
|
self.conv1 = conv1x1(inplanes, width) |
|
self.bn1 = norm_layer(width, track_running_stats=False, affine=True) |
|
self.conv2 = conv3x3(width, width, stride, groups, dilation) |
|
self.bn2 = norm_layer(width, track_running_stats=False, affine=True) |
|
self.conv3 = conv1x1(width, planes * self.expansion) |
|
self.bn3 = norm_layer( |
|
planes * self.expansion, track_running_stats=False, affine=True |
|
) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class conv(nn.Module): |
|
def __init__(self, num_in_layers, num_out_layers, kernel_size, stride): |
|
super(conv, self).__init__() |
|
self.kernel_size = kernel_size |
|
self.conv = nn.Conv2d( |
|
num_in_layers, |
|
num_out_layers, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=(self.kernel_size - 1) // 2, |
|
padding_mode="reflect", |
|
) |
|
|
|
|
|
|
|
self.bn = nn.BatchNorm2d(num_out_layers, track_running_stats=False, affine=True) |
|
|
|
|
|
def forward(self, x): |
|
return F.elu(self.bn(self.conv(x)), inplace=True) |
|
|
|
|
|
class upconv(nn.Module): |
|
def __init__(self, num_in_layers, num_out_layers, kernel_size, scale): |
|
super(upconv, self).__init__() |
|
self.scale = scale |
|
self.conv = conv(num_in_layers, num_out_layers, kernel_size, 1) |
|
|
|
def forward(self, x): |
|
x = nn.functional.interpolate( |
|
x, scale_factor=self.scale, align_corners=True, mode="bilinear" |
|
) |
|
return self.conv(x) |
|
|
|
|
|
class ResUNet(nn.Module): |
|
def __init__( |
|
self, |
|
encoder="resnet34", |
|
coarse_out_ch=32, |
|
fine_out_ch=32, |
|
norm_layer=None, |
|
coarse_only=False, |
|
): |
|
super(ResUNet, self).__init__() |
|
assert encoder in [ |
|
"resnet18", |
|
"resnet34", |
|
"resnet50", |
|
"resnet101", |
|
"resnet152", |
|
], "Incorrect encoder type" |
|
if encoder in ["resnet18", "resnet34"]: |
|
filters = [64, 128, 256, 512] |
|
else: |
|
filters = [256, 512, 1024, 2048] |
|
self.coarse_only = coarse_only |
|
if self.coarse_only: |
|
fine_out_ch = 0 |
|
self.coarse_out_ch = coarse_out_ch |
|
self.fine_out_ch = fine_out_ch |
|
out_ch = coarse_out_ch + fine_out_ch |
|
|
|
|
|
layers = [3, 4, 6, 3] |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
|
|
self._norm_layer = norm_layer |
|
self.dilation = 1 |
|
block = BasicBlock |
|
replace_stride_with_dilation = [False, False, False] |
|
self.inplanes = 64 |
|
self.groups = 1 |
|
self.base_width = 64 |
|
self.conv1 = nn.Conv2d( |
|
3, |
|
self.inplanes, |
|
kernel_size=7, |
|
stride=2, |
|
padding=3, |
|
bias=False, |
|
padding_mode="reflect", |
|
) |
|
self.bn1 = norm_layer(self.inplanes, track_running_stats=False, affine=True) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.layer1 = self._make_layer(block, 64, layers[0], stride=2) |
|
self.layer2 = self._make_layer( |
|
block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0] |
|
) |
|
self.layer3 = self._make_layer( |
|
block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1] |
|
) |
|
|
|
|
|
self.upconv3 = upconv(filters[2], 128, 3, 2) |
|
self.iconv3 = conv(filters[1] + 128, 128, 3, 1) |
|
self.upconv2 = upconv(128, 64, 3, 2) |
|
self.iconv2 = conv(filters[0] + 64, out_ch, 3, 1) |
|
|
|
|
|
self.out_conv = nn.Conv2d(out_ch, out_ch, 1, 1) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilate=False): |
|
norm_layer = self._norm_layer |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
norm_layer( |
|
planes * block.expansion, track_running_stats=False, affine=True |
|
), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
stride, |
|
downsample, |
|
self.groups, |
|
self.base_width, |
|
previous_dilation, |
|
norm_layer, |
|
) |
|
) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
groups=self.groups, |
|
base_width=self.base_width, |
|
dilation=self.dilation, |
|
norm_layer=norm_layer, |
|
) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def skipconnect(self, x1, x2): |
|
diffY = x2.size()[2] - x1.size()[2] |
|
diffX = x2.size()[3] - x1.size()[3] |
|
|
|
x1 = F.pad(x1, (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2)) |
|
|
|
|
|
|
|
|
|
|
|
x = torch.cat([x2, x1], dim=1) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.relu(self.bn1(self.conv1(x))) |
|
|
|
x1 = self.layer1(x) |
|
x2 = self.layer2(x1) |
|
x3 = self.layer3(x2) |
|
|
|
x = self.upconv3(x3) |
|
x = self.skipconnect(x2, x) |
|
x = self.iconv3(x) |
|
|
|
x = self.upconv2(x) |
|
x = self.skipconnect(x1, x) |
|
x = self.iconv2(x) |
|
|
|
x_out = self.out_conv(x) |
|
|
|
return x_out |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|