remove
Browse files- zero123plus/pipeline.Py +0 -406
zero123plus/pipeline.Py
DELETED
|
@@ -1,406 +0,0 @@
|
|
| 1 |
-
from typing import Any, Dict, Optional
|
| 2 |
-
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 3 |
-
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 4 |
-
|
| 5 |
-
import numpy
|
| 6 |
-
import torch
|
| 7 |
-
import torch.nn as nn
|
| 8 |
-
import torch.utils.checkpoint
|
| 9 |
-
import torch.distributed
|
| 10 |
-
import transformers
|
| 11 |
-
from collections import OrderedDict
|
| 12 |
-
from PIL import Image
|
| 13 |
-
from torchvision import transforms
|
| 14 |
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
| 15 |
-
|
| 16 |
-
import diffusers
|
| 17 |
-
from diffusers import (
|
| 18 |
-
AutoencoderKL,
|
| 19 |
-
DDPMScheduler,
|
| 20 |
-
DiffusionPipeline,
|
| 21 |
-
EulerAncestralDiscreteScheduler,
|
| 22 |
-
UNet2DConditionModel,
|
| 23 |
-
ImagePipelineOutput
|
| 24 |
-
)
|
| 25 |
-
from diffusers.image_processor import VaeImageProcessor
|
| 26 |
-
from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0
|
| 27 |
-
from diffusers.utils.import_utils import is_xformers_available
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
def to_rgb_image(maybe_rgba: Image.Image):
|
| 31 |
-
if maybe_rgba.mode == 'RGB':
|
| 32 |
-
return maybe_rgba
|
| 33 |
-
elif maybe_rgba.mode == 'RGBA':
|
| 34 |
-
rgba = maybe_rgba
|
| 35 |
-
img = numpy.random.randint(255, 256, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8)
|
| 36 |
-
img = Image.fromarray(img, 'RGB')
|
| 37 |
-
img.paste(rgba, mask=rgba.getchannel('A'))
|
| 38 |
-
return img
|
| 39 |
-
else:
|
| 40 |
-
raise ValueError("Unsupported image type.", maybe_rgba.mode)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
class ReferenceOnlyAttnProc(torch.nn.Module):
|
| 44 |
-
def __init__(
|
| 45 |
-
self,
|
| 46 |
-
chained_proc,
|
| 47 |
-
enabled=False,
|
| 48 |
-
name=None
|
| 49 |
-
) -> None:
|
| 50 |
-
super().__init__()
|
| 51 |
-
self.enabled = enabled
|
| 52 |
-
self.chained_proc = chained_proc
|
| 53 |
-
self.name = name
|
| 54 |
-
|
| 55 |
-
def __call__(
|
| 56 |
-
self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None,
|
| 57 |
-
mode="w", ref_dict: dict = None, is_cfg_guidance = False
|
| 58 |
-
) -> Any:
|
| 59 |
-
if encoder_hidden_states is None:
|
| 60 |
-
encoder_hidden_states = hidden_states
|
| 61 |
-
if self.enabled and is_cfg_guidance:
|
| 62 |
-
res0 = self.chained_proc(attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask)
|
| 63 |
-
hidden_states = hidden_states[1:]
|
| 64 |
-
encoder_hidden_states = encoder_hidden_states[1:]
|
| 65 |
-
if self.enabled:
|
| 66 |
-
if mode == 'w':
|
| 67 |
-
ref_dict[self.name] = encoder_hidden_states
|
| 68 |
-
elif mode == 'r':
|
| 69 |
-
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1)
|
| 70 |
-
elif mode == 'm':
|
| 71 |
-
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1)
|
| 72 |
-
else:
|
| 73 |
-
assert False, mode
|
| 74 |
-
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
|
| 75 |
-
if self.enabled and is_cfg_guidance:
|
| 76 |
-
res = torch.cat([res0, res])
|
| 77 |
-
return res
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
class RefOnlyNoisedUNet(torch.nn.Module):
|
| 81 |
-
def __init__(self, unet: UNet2DConditionModel, train_sched: DDPMScheduler, val_sched: EulerAncestralDiscreteScheduler) -> None:
|
| 82 |
-
super().__init__()
|
| 83 |
-
self.unet = unet
|
| 84 |
-
self.train_sched = train_sched
|
| 85 |
-
self.val_sched = val_sched
|
| 86 |
-
|
| 87 |
-
unet_lora_attn_procs = dict()
|
| 88 |
-
for name, _ in unet.attn_processors.items():
|
| 89 |
-
if torch.__version__ >= '2.0':
|
| 90 |
-
default_attn_proc = AttnProcessor2_0()
|
| 91 |
-
elif is_xformers_available():
|
| 92 |
-
default_attn_proc = XFormersAttnProcessor()
|
| 93 |
-
else:
|
| 94 |
-
default_attn_proc = AttnProcessor()
|
| 95 |
-
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
|
| 96 |
-
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
|
| 97 |
-
)
|
| 98 |
-
unet.set_attn_processor(unet_lora_attn_procs)
|
| 99 |
-
|
| 100 |
-
def __getattr__(self, name: str):
|
| 101 |
-
try:
|
| 102 |
-
return super().__getattr__(name)
|
| 103 |
-
except AttributeError:
|
| 104 |
-
return getattr(self.unet, name)
|
| 105 |
-
|
| 106 |
-
def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs):
|
| 107 |
-
if is_cfg_guidance:
|
| 108 |
-
encoder_hidden_states = encoder_hidden_states[1:]
|
| 109 |
-
class_labels = class_labels[1:]
|
| 110 |
-
self.unet(
|
| 111 |
-
noisy_cond_lat, timestep,
|
| 112 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 113 |
-
class_labels=class_labels,
|
| 114 |
-
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
|
| 115 |
-
**kwargs
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
def forward(
|
| 119 |
-
self, sample, timestep, encoder_hidden_states, class_labels=None,
|
| 120 |
-
*args, cross_attention_kwargs,
|
| 121 |
-
down_block_res_samples=None, mid_block_res_sample=None,
|
| 122 |
-
**kwargs
|
| 123 |
-
):
|
| 124 |
-
cond_lat = cross_attention_kwargs['cond_lat']
|
| 125 |
-
is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False)
|
| 126 |
-
noise = torch.randn_like(cond_lat)
|
| 127 |
-
if self.training:
|
| 128 |
-
noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
|
| 129 |
-
noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
|
| 130 |
-
else:
|
| 131 |
-
noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
|
| 132 |
-
noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
|
| 133 |
-
ref_dict = {}
|
| 134 |
-
self.forward_cond(
|
| 135 |
-
noisy_cond_lat, timestep,
|
| 136 |
-
encoder_hidden_states, class_labels,
|
| 137 |
-
ref_dict, is_cfg_guidance, **kwargs
|
| 138 |
-
)
|
| 139 |
-
weight_dtype = self.unet.dtype
|
| 140 |
-
return self.unet(
|
| 141 |
-
sample, timestep,
|
| 142 |
-
encoder_hidden_states, *args,
|
| 143 |
-
class_labels=class_labels,
|
| 144 |
-
cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance),
|
| 145 |
-
down_block_additional_residuals=[
|
| 146 |
-
sample.to(dtype=weight_dtype) for sample in down_block_res_samples
|
| 147 |
-
] if down_block_res_samples is not None else None,
|
| 148 |
-
mid_block_additional_residual=(
|
| 149 |
-
mid_block_res_sample.to(dtype=weight_dtype)
|
| 150 |
-
if mid_block_res_sample is not None else None
|
| 151 |
-
),
|
| 152 |
-
**kwargs
|
| 153 |
-
)
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
def scale_latents(latents):
|
| 157 |
-
latents = (latents - 0.22) * 0.75
|
| 158 |
-
return latents
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
def unscale_latents(latents):
|
| 162 |
-
latents = latents / 0.75 + 0.22
|
| 163 |
-
return latents
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
def scale_image(image):
|
| 167 |
-
image = image * 0.5 / 0.8
|
| 168 |
-
return image
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
def unscale_image(image):
|
| 172 |
-
image = image / 0.5 * 0.8
|
| 173 |
-
return image
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
class DepthControlUNet(torch.nn.Module):
|
| 177 |
-
def __init__(self, unet: RefOnlyNoisedUNet, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0) -> None:
|
| 178 |
-
super().__init__()
|
| 179 |
-
self.unet = unet
|
| 180 |
-
if controlnet is None:
|
| 181 |
-
self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet)
|
| 182 |
-
else:
|
| 183 |
-
self.controlnet = controlnet
|
| 184 |
-
DefaultAttnProc = AttnProcessor2_0
|
| 185 |
-
if is_xformers_available():
|
| 186 |
-
DefaultAttnProc = XFormersAttnProcessor
|
| 187 |
-
self.controlnet.set_attn_processor(DefaultAttnProc())
|
| 188 |
-
self.conditioning_scale = conditioning_scale
|
| 189 |
-
|
| 190 |
-
def __getattr__(self, name: str):
|
| 191 |
-
try:
|
| 192 |
-
return super().__getattr__(name)
|
| 193 |
-
except AttributeError:
|
| 194 |
-
return getattr(self.unet, name)
|
| 195 |
-
|
| 196 |
-
def forward(self, sample, timestep, encoder_hidden_states, class_labels=None, *args, cross_attention_kwargs: dict, **kwargs):
|
| 197 |
-
cross_attention_kwargs = dict(cross_attention_kwargs)
|
| 198 |
-
control_depth = cross_attention_kwargs.pop('control_depth')
|
| 199 |
-
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
| 200 |
-
sample,
|
| 201 |
-
timestep,
|
| 202 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 203 |
-
controlnet_cond=control_depth,
|
| 204 |
-
conditioning_scale=self.conditioning_scale,
|
| 205 |
-
return_dict=False,
|
| 206 |
-
)
|
| 207 |
-
return self.unet(
|
| 208 |
-
sample,
|
| 209 |
-
timestep,
|
| 210 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 211 |
-
down_block_res_samples=down_block_res_samples,
|
| 212 |
-
mid_block_res_sample=mid_block_res_sample,
|
| 213 |
-
cross_attention_kwargs=cross_attention_kwargs
|
| 214 |
-
)
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
class ModuleListDict(torch.nn.Module):
|
| 218 |
-
def __init__(self, procs: dict) -> None:
|
| 219 |
-
super().__init__()
|
| 220 |
-
self.keys = sorted(procs.keys())
|
| 221 |
-
self.values = torch.nn.ModuleList(procs[k] for k in self.keys)
|
| 222 |
-
|
| 223 |
-
def __getitem__(self, key):
|
| 224 |
-
return self.values[self.keys.index(key)]
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
class SuperNet(torch.nn.Module):
|
| 228 |
-
def __init__(self, state_dict: Dict[str, torch.Tensor]):
|
| 229 |
-
super().__init__()
|
| 230 |
-
state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys()))
|
| 231 |
-
self.layers = torch.nn.ModuleList(state_dict.values())
|
| 232 |
-
self.mapping = dict(enumerate(state_dict.keys()))
|
| 233 |
-
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
|
| 234 |
-
|
| 235 |
-
# .processor for unet, .self_attn for text encoder
|
| 236 |
-
self.split_keys = [".processor", ".self_attn"]
|
| 237 |
-
|
| 238 |
-
# we add a hook to state_dict() and load_state_dict() so that the
|
| 239 |
-
# naming fits with `unet.attn_processors`
|
| 240 |
-
def map_to(module, state_dict, *args, **kwargs):
|
| 241 |
-
new_state_dict = {}
|
| 242 |
-
for key, value in state_dict.items():
|
| 243 |
-
num = int(key.split(".")[1]) # 0 is always "layers"
|
| 244 |
-
new_key = key.replace(f"layers.{num}", module.mapping[num])
|
| 245 |
-
new_state_dict[new_key] = value
|
| 246 |
-
|
| 247 |
-
return new_state_dict
|
| 248 |
-
|
| 249 |
-
def remap_key(key, state_dict):
|
| 250 |
-
for k in self.split_keys:
|
| 251 |
-
if k in key:
|
| 252 |
-
return key.split(k)[0] + k
|
| 253 |
-
return key.split('.')[0]
|
| 254 |
-
|
| 255 |
-
def map_from(module, state_dict, *args, **kwargs):
|
| 256 |
-
all_keys = list(state_dict.keys())
|
| 257 |
-
for key in all_keys:
|
| 258 |
-
replace_key = remap_key(key, state_dict)
|
| 259 |
-
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
|
| 260 |
-
state_dict[new_key] = state_dict[key]
|
| 261 |
-
del state_dict[key]
|
| 262 |
-
|
| 263 |
-
self._register_state_dict_hook(map_to)
|
| 264 |
-
self._register_load_state_dict_pre_hook(map_from, with_module=True)
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
class Zero123PlusPipeline(diffusers.StableDiffusionPipeline):
|
| 268 |
-
tokenizer: transformers.CLIPTokenizer
|
| 269 |
-
text_encoder: transformers.CLIPTextModel
|
| 270 |
-
vision_encoder: transformers.CLIPVisionModelWithProjection
|
| 271 |
-
|
| 272 |
-
feature_extractor_clip: transformers.CLIPImageProcessor
|
| 273 |
-
unet: UNet2DConditionModel
|
| 274 |
-
scheduler: diffusers.schedulers.KarrasDiffusionSchedulers
|
| 275 |
-
|
| 276 |
-
vae: AutoencoderKL
|
| 277 |
-
ramping: nn.Linear
|
| 278 |
-
|
| 279 |
-
feature_extractor_vae: transformers.CLIPImageProcessor
|
| 280 |
-
|
| 281 |
-
depth_transforms_multi = transforms.Compose([
|
| 282 |
-
transforms.ToTensor(),
|
| 283 |
-
transforms.Normalize([0.5], [0.5])
|
| 284 |
-
])
|
| 285 |
-
|
| 286 |
-
def __init__(
|
| 287 |
-
self,
|
| 288 |
-
vae: AutoencoderKL,
|
| 289 |
-
text_encoder: CLIPTextModel,
|
| 290 |
-
tokenizer: CLIPTokenizer,
|
| 291 |
-
unet: UNet2DConditionModel,
|
| 292 |
-
scheduler: KarrasDiffusionSchedulers,
|
| 293 |
-
vision_encoder: transformers.CLIPVisionModelWithProjection,
|
| 294 |
-
feature_extractor_clip: CLIPImageProcessor,
|
| 295 |
-
feature_extractor_vae: CLIPImageProcessor,
|
| 296 |
-
ramping_coefficients: Optional[list] = None,
|
| 297 |
-
safety_checker=None,
|
| 298 |
-
):
|
| 299 |
-
DiffusionPipeline.__init__(self)
|
| 300 |
-
|
| 301 |
-
self.register_modules(
|
| 302 |
-
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer,
|
| 303 |
-
unet=unet, scheduler=scheduler, safety_checker=None,
|
| 304 |
-
vision_encoder=vision_encoder,
|
| 305 |
-
feature_extractor_clip=feature_extractor_clip,
|
| 306 |
-
feature_extractor_vae=feature_extractor_vae
|
| 307 |
-
)
|
| 308 |
-
self.register_to_config(ramping_coefficients=ramping_coefficients)
|
| 309 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 310 |
-
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 311 |
-
|
| 312 |
-
def prepare(self):
|
| 313 |
-
train_sched = DDPMScheduler.from_config(self.scheduler.config)
|
| 314 |
-
if isinstance(self.unet, UNet2DConditionModel):
|
| 315 |
-
self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval()
|
| 316 |
-
|
| 317 |
-
def add_controlnet(self, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0):
|
| 318 |
-
self.prepare()
|
| 319 |
-
self.unet = DepthControlUNet(self.unet, controlnet, conditioning_scale)
|
| 320 |
-
return SuperNet(OrderedDict([('controlnet', self.unet.controlnet)]))
|
| 321 |
-
|
| 322 |
-
def encode_condition_image(self, image: torch.Tensor):
|
| 323 |
-
image = self.vae.encode(image).latent_dist.sample()
|
| 324 |
-
return image
|
| 325 |
-
|
| 326 |
-
@torch.no_grad()
|
| 327 |
-
def __call__(
|
| 328 |
-
self,
|
| 329 |
-
image: Image.Image = None,
|
| 330 |
-
prompt = "",
|
| 331 |
-
*args,
|
| 332 |
-
num_images_per_prompt: Optional[int] = 1,
|
| 333 |
-
guidance_scale=4.0,
|
| 334 |
-
depth_image: Image.Image = None,
|
| 335 |
-
output_type: Optional[str] = "pil",
|
| 336 |
-
width=640,
|
| 337 |
-
height=960,
|
| 338 |
-
num_inference_steps=28,
|
| 339 |
-
return_dict=True,
|
| 340 |
-
**kwargs
|
| 341 |
-
):
|
| 342 |
-
self.prepare()
|
| 343 |
-
if image is None:
|
| 344 |
-
raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.")
|
| 345 |
-
assert not isinstance(image, torch.Tensor)
|
| 346 |
-
image = to_rgb_image(image)
|
| 347 |
-
image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
|
| 348 |
-
image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
|
| 349 |
-
if depth_image is not None and hasattr(self.unet, "controlnet"):
|
| 350 |
-
depth_image = to_rgb_image(depth_image)
|
| 351 |
-
depth_image = self.depth_transforms_multi(depth_image).to(
|
| 352 |
-
device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype
|
| 353 |
-
)
|
| 354 |
-
image = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
|
| 355 |
-
image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
|
| 356 |
-
cond_lat = self.encode_condition_image(image)
|
| 357 |
-
if guidance_scale > 1:
|
| 358 |
-
negative_lat = self.encode_condition_image(torch.zeros_like(image))
|
| 359 |
-
cond_lat = torch.cat([negative_lat, cond_lat])
|
| 360 |
-
encoded = self.vision_encoder(image_2, output_hidden_states=False)
|
| 361 |
-
global_embeds = encoded.image_embeds
|
| 362 |
-
global_embeds = global_embeds.unsqueeze(-2)
|
| 363 |
-
|
| 364 |
-
if hasattr(self, "encode_prompt"):
|
| 365 |
-
encoder_hidden_states = self.encode_prompt(
|
| 366 |
-
prompt,
|
| 367 |
-
self.device,
|
| 368 |
-
num_images_per_prompt,
|
| 369 |
-
False
|
| 370 |
-
)[0]
|
| 371 |
-
else:
|
| 372 |
-
encoder_hidden_states = self._encode_prompt(
|
| 373 |
-
prompt,
|
| 374 |
-
self.device,
|
| 375 |
-
num_images_per_prompt,
|
| 376 |
-
False
|
| 377 |
-
)
|
| 378 |
-
ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
|
| 379 |
-
encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
|
| 380 |
-
cak = dict(cond_lat=cond_lat)
|
| 381 |
-
if hasattr(self.unet, "controlnet"):
|
| 382 |
-
cak['control_depth'] = depth_image
|
| 383 |
-
latents: torch.Tensor = super().__call__(
|
| 384 |
-
None,
|
| 385 |
-
*args,
|
| 386 |
-
cross_attention_kwargs=cak,
|
| 387 |
-
guidance_scale=guidance_scale,
|
| 388 |
-
num_images_per_prompt=num_images_per_prompt,
|
| 389 |
-
prompt_embeds=encoder_hidden_states,
|
| 390 |
-
num_inference_steps=num_inference_steps,
|
| 391 |
-
output_type='latent',
|
| 392 |
-
width=width,
|
| 393 |
-
height=height,
|
| 394 |
-
**kwargs
|
| 395 |
-
).images
|
| 396 |
-
latents = unscale_latents(latents)
|
| 397 |
-
if not output_type == "latent":
|
| 398 |
-
image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0])
|
| 399 |
-
else:
|
| 400 |
-
image = latents
|
| 401 |
-
|
| 402 |
-
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 403 |
-
if not return_dict:
|
| 404 |
-
return (image,)
|
| 405 |
-
|
| 406 |
-
return ImagePipelineOutput(images=image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|