File size: 5,861 Bytes
c698239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#docker run -it -v "$(pwd):/home/app" -p 4000:4000 jedha/streamlit-fs-image
#docker run -it -v "$(pwd):/home/app" -p 4000:4000 jedha/streamlit-fs-image bash
#docker build . -t NAME_DOCKER
# docker run -it -p 4000:80 -v "$(pwd):/home/app" -e PORT:80 NAME_DOCKER bash

#http://localhost:4000

import streamlit as st
import pandas as pd
import plotly.express as px 
import plotly.graph_objects as go
import numpy as np



DATA_URL = 'https://full-stack-assets.s3.eu-west-3.amazonaws.com/Deployment/get_around_delay_analysis.xlsx'

@st.cache_data
def load_data(): 
    data = pd.read_excel(DATA_URL)
    return data

data = load_data()
print('state: ',data['state'].value_counts())

st.markdown("""

    Bienvenue sur ce tableau de bord streamlit du `Projet Get Around`. Nos <a href=DATA_URL style="text-decoration: none;">données</a>

    illustrent quelques statistiques et visualisations de données. A l'aide de cet un outil permet de suivre et comprendre les données des locations de voitures réalisé par

    <a href="https://github.com/2nzi" style="text-decoration: none;">@2nzi</a> sur github.

""", unsafe_allow_html=True)



if st.checkbox('Show raw data'):
    st.subheader('Raw data')
    st.write(data)   


data = data.drop(['time_delta_with_previous_rental_in_minutes','previous_ended_rental_id'],axis=1)

st.subheader("Part des différents types de location")
st.markdown("""

    Deux types de locations existe. Connect & Mobile.

""", unsafe_allow_html=True)

fig = px.pie(data, values='car_id',names='checkin_type')
# fig = go.Figure(data=[go.Pie(labels=data['checkin_type'], values=data['car_id'])])
st.plotly_chart(fig)    



st.subheader("Repartition des locations annulées dans chaque type de commande")
fig = px.histogram(data,x='checkin_type',color='state')
st.plotly_chart(fig)    


col = 'delay_at_checkout_in_minutes'
col_med = data[col].median()
col_std = data[col].std()
lower_bound = col_med - 2 * col_std
upper_bound = col_med + 2 * col_std
print(col_med,lower_bound,upper_bound)
data = data[(data[col] >= lower_bound) & (data[col] <= upper_bound)]
print('state: ',data['state'].value_counts())
#utiliser Q1-1.5IQR et Q3+1.5IQR

if st.checkbox('Show on Late',value=True):
    mini = 0
    df = data[data['delay_at_checkout_in_minutes']>mini]
    title_late = 'Late cars'

else:
    df = data
    title_late = 'All cars'
    mini = int(df['delay_at_checkout_in_minutes'].min())


st.subheader(title_late)
trsh = int(df['delay_at_checkout_in_minutes'].max()) #make the max chossable !
seuil = st.slider("Choose the minute threshold!", mini, int(df['delay_at_checkout_in_minutes'].max()), int(trsh*0.1))
# seuil = st.slider("Choose the minute threshold!", 0, trsh, int(trsh*0.1))

fig_px = px.histogram(df, color='checkin_type', x='delay_at_checkout_in_minutes')
fig = go.Figure(fig_px)

x=seuil
fig.add_shape(
    type="line",
    x0=x, x1=x, y0=0, y1=1,
    line=dict(color="Green", width=2, dash="dash"),
    xref='x', yref='paper'
)

fig.add_shape(
    type="rect",
    x0=mini, x1=x, y0=0, y1=1,
    fillcolor="Green",
    opacity=0.2,
    line_width=0,
    xref='x', yref='paper'
)

fig.update_layout(
    title="",
    xaxis_title="Delay at Checkout in Minutes",
    yaxis_title="Count"
)

st.plotly_chart(fig)  
col1, col2 = st.columns(2)

move_upper_mask = df['delay_at_checkout_in_minutes']<seuil
lower_mask = df['delay_at_checkout_in_minutes']>mini
global_mask = move_upper_mask & lower_mask
col1.metric("Number of rent", len(df[global_mask]))

part_of_rent = 100*len(df[move_upper_mask]) / len(df)
col2.metric("Part of rent", f'{part_of_rent:.2f}%')

# col2.metric("Part of rent", f'{100*len(df[df['delay_at_checkout_in_minutes']<seuil])/len(df['delay_at_checkout_in_minutes']):.2f}%')


#IDEE:
# pouvoir choisir l'id d'une voiture spécifiquement





# day_data = data[data['dateRep']== start_time]



# st.subheader("Analyse par pays")

# country = st.selectbox("Select a country you want to see sales", data["countriesAndTerritories"].sort_values().unique())




# st.write("Current growth rate")

# country_data = data[data["countriesAndTerritories"]==country]

# from random import randrange
# current_day = randrange(len(country_data))
# # current_day = int(len(country_data)/2) #take random value

# # st.write(country_data.iloc[current_day]['dateRep'])
# # st.write(country_data.iloc[current_day]['cases'])
# # st.write(country_data.iloc[current_day-1]['cases'])


# ratio = np.round((country_data.iloc[current_day]['cases'] - country_data.iloc[current_day-1]['cases'])/country_data.iloc[current_day]['cases'],2)
# ratio2 = np.round((country_data.iloc[current_day]['cases'] - country_data.iloc[current_day-2]['cases'])/country_data.iloc[current_day-1]['cases'],2)
# diff_ratio = np.round(ratio-ratio2,2)
# st.metric(label="",value = ratio, delta = diff_ratio)
# # st.write(f'{ratio:.2f}')


# #### Create two columns
# col1, col2 = st.columns(2)

# with col1:
#     st.subheader('Cas positifs cases')
#     fig = go.Figure()
#     fig.add_trace(go.Scatter(x=data_date["dateRep"], y=data_date["cases"], mode='lines',name='new cases', line=dict(color='blue')))
#     fig.add_trace(go.Scatter(x=data_date["dateRep"], y=data_date["Rolcases"], mode='lines',name='Rolling 7-day Mean',line=dict(color='red')))

#     st.plotly_chart(fig)

# with col2:
#     st.subheader('Cas de décès')
#     fig2 = go.Figure()
#     fig2.add_trace(go.Scatter(x=data_date["dateRep"], y=data_date["deaths"], mode='lines',name='new cases', line=dict(color='blue')))
#     fig2.add_trace(go.Scatter(x=data_date["dateRep"], y=data_date["Roldeaths"], mode='lines',name='Rolling 7-day Mean',line=dict(color='red')))

#     st.plotly_chart(fig2)