File size: 5,955 Bytes
967b935
 
 
15a293c
967b935
 
 
 
 
 
15a293c
f4bb7d1
967b935
f4bb7d1
967b935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bb7d1
967b935
 
 
f4bb7d1
967b935
 
 
 
 
 
 
 
 
 
 
 
f4bb7d1
967b935
 
 
f4bb7d1
967b935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bb7d1
967b935
 
 
 
 
 
 
f4bb7d1
967b935
 
 
 
 
f4bb7d1
d4fa0c5
967b935
 
 
 
 
 
 
 
 
 
 
 
d4fa0c5
f4bb7d1
 
967b935
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from fastapi import FastAPI, UploadFile, File
import cv2
import torch
import pandas as pd
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForImageClassification
from tqdm import tqdm
import json
import shutil
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse

app = FastAPI()

# Add CORS middleware to allow requests from localhost:8080 (or any origin you specify)
app.add_middleware(
    CORSMiddleware,
    # allow_origins=["http://localhost:8080"],  # Replace with the URL of your Vue.js app
    allow_origins=["http://localhost:8080"],  # Replace with the URL of your Vue.js app
    allow_credentials=True,
    allow_methods=["*"],  # Allows all HTTP methods (GET, POST, etc.)
    allow_headers=["*"],  # Allows all headers (such as Content-Type, Authorization, etc.)
)

# Charger le processor et le modèle fine-tuné depuis le chemin local
local_model_path = r'.\vit-finetuned-ucf101'
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained(local_model_path)
# model = AutoModelForImageClassification.from_pretrained("2nzi/vit-finetuned-ucf101") 
model.eval()

# Fonction pour classifier une image
def classifier_image(image):
    image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    inputs = processor(images=image_pil, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
    predicted_class_idx = logits.argmax(-1).item()
    predicted_class = model.config.id2label[predicted_class_idx]
    return predicted_class

# Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
def identifier_sequences_surfing(video_path, intervalle=0.5):
    cap = cv2.VideoCapture(video_path)
    frame_rate = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_interval = int(frame_rate * intervalle)

    resultats = []
    sequences_surfing = []
    frame_index = 0
    in_surf_sequence = False
    start_timestamp = None

    with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
        success, frame = cap.read()
        while success:
            if frame_index % frame_interval == 0:
                timestamp = round(frame_index / frame_rate, 2)  # Maintain precision to the centisecond level
                classe = classifier_image(frame)
                resultats.append({"Timestamp": timestamp, "Classe": classe})

                if classe == "Surfing" and not in_surf_sequence:
                    in_surf_sequence = True
                    start_timestamp = timestamp

                elif classe != "Surfing" and in_surf_sequence:
                    # Vérifier l'image suivante pour confirmer si c'était une erreur ponctuelle
                    success_next, frame_next = cap.read()
                    next_timestamp = round((frame_index + frame_interval) / frame_rate, 2)
                    classe_next = None

                    if success_next:
                        classe_next = classifier_image(frame_next)
                        resultats.append({"Timestamp": next_timestamp, "Classe": classe_next})

                    # Si l'image suivante est "Surfing", on ignore l'erreur ponctuelle
                    if classe_next == "Surfing":
                        success = success_next
                        frame = frame_next
                        frame_index += frame_interval
                        pbar.update(frame_interval)
                        continue
                    else:
                        # Sinon, terminer la séquence "Surfing"
                        in_surf_sequence = False
                        end_timestamp = timestamp
                        sequences_surfing.append((start_timestamp, end_timestamp))

            success, frame = cap.read()
            frame_index += 1
            pbar.update(1)

    # Si on est toujours dans une séquence "Surfing" à la fin de la vidéo
    if in_surf_sequence:
        sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))

    cap.release()
    dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
    return dataframe_sequences

# Fonction pour convertir les séquences en format JSON
def convertir_sequences_en_json(dataframe):
    events = []
    blocks = []
    for idx, row in dataframe.iterrows():
        block = {
            "id": f"Surfing{idx + 1}",
            "start": round(row["Début"], 2),
            "end": round(row["Fin"], 2)
        }
        blocks.append(block)
    event = {
        "event": "Surfing",
        "blocks": blocks
    }
    events.append(event)
    return events

@app.post("/analyze_video/")
async def analyze_video(file: UploadFile = File(...)):
    with open("uploaded_video.mp4", "wb") as buffer:
        shutil.copyfileobj(file.file, buffer)

    dataframe_sequences = identifier_sequences_surfing("uploaded_video.mp4", intervalle=1)
    json_result = convertir_sequences_en_json(dataframe_sequences)
    return json_result

@app.get("/", response_class=HTMLResponse)
async def index():
    return (
        """
        <html>
            <body>
                <h1>Hello world!</h1>
                <p>This `/` is the most simple and default endpoint.</p>
                <p>If you want to learn more, check out the documentation of the API at 
                <a href='/docs'>/docs</a> or 
                <a href='https://2nzi-video-sequence-labeling.hf.space/docs' target='_blank'>external docs</a>.
                </p>
            </body>
        </html>
        """
    )


# Lancer l'application avec uvicorn (command line)
# uvicorn main:app --reload
# http://localhost:8000/docs#/
# (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1