File size: 12,454 Bytes
53c7c09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0dcef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31216a6
b0dcef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f137487
867f506
b0dcef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
867f506
b0dcef4
 
 
 
 
 
 
 
53c7c09
 
 
 
b0dcef4
 
53c7c09
 
 
 
b0dcef4
53c7c09
 
b0dcef4
53c7c09
 
 
 
 
b0dcef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# from fastapi import FastAPI, UploadFile, File
# import cv2
# import torch
# import pandas as pd
# from PIL import Image
# from transformers import AutoImageProcessor, AutoModelForImageClassification
# from tqdm import tqdm
# import json
# import shutil
# from fastapi.middleware.cors import CORSMiddleware
# from fastapi.responses import HTMLResponse

# app = FastAPI()

# # Add CORS middleware to allow requests from localhost:8080 (or any origin you specify)
# app.add_middleware(
#     CORSMiddleware,
#     # allow_origins=["http://localhost:8080"],  # Replace with the URL of your Vue.js app
#     allow_origins=["http://localhost:8080"],  # Replace with the URL of your Vue.js app
#     allow_credentials=True,
#     allow_methods=["*"],  # Allows all HTTP methods (GET, POST, etc.)
#     allow_headers=["*"],  # Allows all headers (such as Content-Type, Authorization, etc.)
# )

# # Charger le processor et le modèle fine-tuné depuis le chemin local
# local_model_path = r'./vit-finetuned-ucf101'
# processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
# model = AutoModelForImageClassification.from_pretrained(local_model_path)
# # model = AutoModelForImageClassification.from_pretrained("2nzi/vit-finetuned-ucf101") 
# model.eval()

# # Fonction pour classifier une image
# def classifier_image(image):
#     image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
#     inputs = processor(images=image_pil, return_tensors="pt")
#     with torch.no_grad():
#         outputs = model(**inputs)
#         logits = outputs.logits
#     predicted_class_idx = logits.argmax(-1).item()
#     predicted_class = model.config.id2label[predicted_class_idx]
#     return predicted_class

# # Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
# def identifier_sequences_surfing(video_path, intervalle=0.5):
#     cap = cv2.VideoCapture(video_path)
#     frame_rate = cap.get(cv2.CAP_PROP_FPS)
#     total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
#     frame_interval = int(frame_rate * intervalle)

#     resultats = []
#     sequences_surfing = []
#     frame_index = 0
#     in_surf_sequence = False
#     start_timestamp = None

#     with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
#         success, frame = cap.read()
#         while success:
#             if frame_index % frame_interval == 0:
#                 timestamp = round(frame_index / frame_rate, 2)  # Maintain precision to the centisecond level
#                 classe = classifier_image(frame)
#                 resultats.append({"Timestamp": timestamp, "Classe": classe})

#                 if classe == "Surfing" and not in_surf_sequence:
#                     in_surf_sequence = True
#                     start_timestamp = timestamp

#                 elif classe != "Surfing" and in_surf_sequence:
#                     # Vérifier l'image suivante pour confirmer si c'était une erreur ponctuelle
#                     success_next, frame_next = cap.read()
#                     next_timestamp = round((frame_index + frame_interval) / frame_rate, 2)
#                     classe_next = None

#                     if success_next:
#                         classe_next = classifier_image(frame_next)
#                         resultats.append({"Timestamp": next_timestamp, "Classe": classe_next})

#                     # Si l'image suivante est "Surfing", on ignore l'erreur ponctuelle
#                     if classe_next == "Surfing":
#                         success = success_next
#                         frame = frame_next
#                         frame_index += frame_interval
#                         pbar.update(frame_interval)
#                         continue
#                     else:
#                         # Sinon, terminer la séquence "Surfing"
#                         in_surf_sequence = False
#                         end_timestamp = timestamp
#                         sequences_surfing.append((start_timestamp, end_timestamp))

#             success, frame = cap.read()
#             frame_index += 1
#             pbar.update(1)

#     # Si on est toujours dans une séquence "Surfing" à la fin de la vidéo
#     if in_surf_sequence:
#         sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))

#     cap.release()
#     dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
#     return dataframe_sequences

# # Fonction pour convertir les séquences en format JSON
# def convertir_sequences_en_json(dataframe):
#     events = []
#     blocks = []
#     for idx, row in dataframe.iterrows():
#         block = {
#             "id": f"Surfing{idx + 1}",
#             "start": round(row["Début"], 2),
#             "end": round(row["Fin"], 2)
#         }
#         blocks.append(block)
#     event = {
#         "event": "Surfing",
#         "blocks": blocks
#     }
#     events.append(event)
#     return events

# @app.post("/analyze_video/")
# async def analyze_video(file: UploadFile = File(...)):
#     with open("uploaded_video.mp4", "wb") as buffer:
#         shutil.copyfileobj(file.file, buffer)

#     dataframe_sequences = identifier_sequences_surfing("uploaded_video.mp4", intervalle=1)
#     json_result = convertir_sequences_en_json(dataframe_sequences)
#     return json_result

# @app.get("/", response_class=HTMLResponse)
# async def index():
#     return (
#         """
#         <html>
#             <body>
#                 <h1>Hello world!</h1>
#                 <p>This `/` is the most simple and default endpoint.</p>
#                 <p>If you want to learn more, check out the documentation of the API at 
#                 <a href='/docs'>/docs</a> or 
#                 <a href='https://2nzi-video-sequence-labeling.hf.space/docs' target='_blank'>external docs</a>.
#                 </p>
#             </body>
#         </html>
#         """
#     )


# # Lancer l'application avec uvicorn (command line)
# # uvicorn main:app --reload
# # http://localhost:8000/docs#/
# # (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1


from fastapi import FastAPI, UploadFile, File
import cv2
import torch
import pandas as pd
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForImageClassification
from tqdm import tqdm
import json
import shutil
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse

app = FastAPI()

# Add CORS middleware to allow requests from localhost:8080 (or any origin you specify)
app.add_middleware(
    CORSMiddleware,
    # allow_origins=["http://localhost:8080"],  # Replace with the URL of your Vue.js app
    allow_origins=["http://localhost:8080"],  # Replace with the URL of your Vue.js app
    allow_credentials=True,
    allow_methods=["*"],  # Allows all HTTP methods (GET, POST, etc.)
    allow_headers=["*"],  # Allows all headers (such as Content-Type, Authorization, etc.)
)

# Charger le processor et le modèle fine-tuné depuis le chemin local
local_model_path = r'./vit-finetuned-ucf101'
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained(local_model_path)
# model = AutoModelForImageClassification.from_pretrained("2nzi/vit-finetuned-ucf101") 
model.eval()

# Fonction pour classifier une image
def classifier_image(image):
    image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    inputs = processor(images=image_pil, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
    predicted_class_idx = logits.argmax(-1).item()
    predicted_class = model.config.id2label[predicted_class_idx]
    return predicted_class

# Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
def identifier_sequences_surfing(video_path, intervalle=0.5):
    cap = cv2.VideoCapture(video_path)
    frame_rate = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_interval = int(frame_rate * intervalle)

    resultats = []
    sequences_surfing = []
    frame_index = 0
    in_surf_sequence = False
    start_timestamp = None

    with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
        success, frame = cap.read()
        while success:
            if frame_index % frame_interval == 0:
                timestamp = round(frame_index / frame_rate, 2)  # Maintain precision to the centisecond level
                classe = classifier_image(frame)
                resultats.append({"Timestamp": timestamp, "Classe": classe})

                if classe == "Surfing" and not in_surf_sequence:
                    in_surf_sequence = True
                    start_timestamp = timestamp

                elif classe != "Surfing" and in_surf_sequence:
                    # Vérifier l'image suivante pour confirmer si c'était une erreur ponctuelle
                    success_next, frame_next = cap.read()
                    next_timestamp = round((frame_index + frame_interval) / frame_rate, 2)
                    classe_next = None

                    if success_next:
                        classe_next = classifier_image(frame_next)
                        resultats.append({"Timestamp": next_timestamp, "Classe": classe_next})

                    # Si l'image suivante est "Surfing", on ignore l'erreur ponctuelle
                    if classe_next == "Surfing":
                        success = success_next
                        frame = frame_next
                        frame_index += frame_interval
                        pbar.update(frame_interval)
                        continue
                    else:
                        # Sinon, terminer la séquence "Surfing"
                        in_surf_sequence = False
                        end_timestamp = timestamp
                        sequences_surfing.append((start_timestamp, end_timestamp))

            success, frame = cap.read()
            frame_index += 1
            pbar.update(1)

    # Si on est toujours dans une séquence "Surfing" à la fin de la vidéo
    if in_surf_sequence:
        sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))

    cap.release()
    dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
    return dataframe_sequences

# Fonction pour convertir les séquences en format JSON
def convertir_sequences_en_json(dataframe):
    events = []
    blocks = []
    for idx, row in dataframe.iterrows():
        block = {
            "id": f"Surfing{idx + 1}",
            "start": round(row["Début"], 2),
            "end": round(row["Fin"], 2)
        }
        blocks.append(block)
    event = {
        "event": "Surfing",
        "blocks": blocks
    }
    events.append(event)
    return events


import os
import tempfile

@app.post("/analyze_video/")
async def analyze_video(file: UploadFile = File(...)):
    # Utiliser tempfile pour créer un fichier temporaire
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4", dir="/tmp") as tmp:
        shutil.copyfileobj(file.file, tmp)
        tmp_path = tmp.name

    # Analyser la vidéo
    dataframe_sequences = identifier_sequences_surfing(tmp_path, intervalle=1)
    json_result = convertir_sequences_en_json(dataframe_sequences)

    # Supprimer le fichier temporaire après utilisation
    os.remove(tmp_path)

    return {"filename": file.filename, "result": json_result}

@app.get("/", response_class=HTMLResponse)
async def index():
    return (
        """
        <html>
            <body>
                <h1>Hello world!</h1>
                <p>This `/` is the most simple and default endpoint.</p>
                <p>If you want to learn more, check out the documentation of the API at 
                <a href='/docs'>/docs</a> or 
                <a href='https://2nzi-video-sequence-labeling.hf.space/docs' target='_blank'>external docs</a>.
                </p>
            </body>
        </html>
        """
    )


# Lancer l'application avec uvicorn (command line)
# uvicorn main:app --reload
# http://localhost:8000/docs#/
# (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1