import uuid import logging import os.path as osp from argparse import Namespace # from tensorboardX import SummaryWriter class Base: """ Base configure file, which contains the basic training parameters and should be inherited by other attribute configure file. """ def __init__(self, config_name, ckpt_dir='./', image_dir='./', annot_dir='./'): self.type = config_name self.id = str(uuid.uuid4()) self.note = "" self.ckpt_dir = ckpt_dir self.image_dir = image_dir self.annot_dir = annot_dir self.loader_type = "alignment" self.loss_func = "STARLoss" # train self.batch_size = 128 self.val_batch_size = 1 self.test_batch_size = 32 self.channels = 3 self.width = 256 self.height = 256 # mean values in r, g, b channel. self.means = (127, 127, 127) self.scale = 0.0078125 self.display_iteration = 100 self.milestones = [50, 80] self.max_epoch = 100 self.net = "stackedHGnet_v1" self.nstack = 4 # ["adam", "sgd"] self.optimizer = "adam" self.learn_rate = 0.1 self.momentum = 0.01 # caffe: 0.99 self.weight_decay = 0.0 self.nesterov = False self.scheduler = "MultiStepLR" self.gamma = 0.1 self.loss_weights = [1.0] self.criterions = ["SoftmaxWithLoss"] self.metrics = ["Accuracy"] self.key_metric_index = 0 self.classes_num = [1000] self.label_num = len(self.classes_num) # model self.ema = False self.use_AAM = True # visualization self.writer = None # log file self.logger = None def init_instance(self): # self.writer = SummaryWriter(logdir=self.log_dir, comment=self.type) log_formatter = logging.Formatter("%(asctime)s %(levelname)-8s: %(message)s") root_logger = logging.getLogger() file_handler = logging.FileHandler(osp.join(self.log_dir, "log.txt")) file_handler.setFormatter(log_formatter) file_handler.setLevel(logging.NOTSET) root_logger.addHandler(file_handler) console_handler = logging.StreamHandler() console_handler.setFormatter(log_formatter) console_handler.setLevel(logging.NOTSET) root_logger.addHandler(console_handler) root_logger.setLevel(logging.NOTSET) self.logger = root_logger def __del__(self): # tensorboard --logdir self.log_dir if self.writer is not None: # self.writer.export_scalars_to_json(self.log_dir + "visual.json") self.writer.close() def init_from_args(self, args: Namespace): args_vars = vars(args) for key, value in args_vars.items(): if hasattr(self, key) and value is not None: setattr(self, key, value)