LAM_h5 / lam /runners /infer /head_utils.py
Ethan18's picture
Upload folder using huggingface_hub
5c48b81 verified
from collections import defaultdict
import os
import json
import numpy as np
from PIL import Image
import cv2
import torch
def scale_intrs(intrs, ratio_x, ratio_y):
if len(intrs.shape) >= 3:
intrs[:, 0] = intrs[:, 0] * ratio_x
intrs[:, 1] = intrs[:, 1] * ratio_y
else:
intrs[0] = intrs[0] * ratio_x
intrs[1] = intrs[1] * ratio_y
return intrs
def calc_new_tgt_size(cur_hw, tgt_size, multiply):
ratio = tgt_size / min(cur_hw)
tgt_size = int(ratio * cur_hw[0]), int(ratio * cur_hw[1])
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1]
return tgt_size, ratio_y, ratio_x
def calc_new_tgt_size_by_aspect(cur_hw, aspect_standard, tgt_size, multiply):
assert abs(cur_hw[0] / cur_hw[1] - aspect_standard) < 0.03
tgt_size = tgt_size * aspect_standard, tgt_size
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1]
return tgt_size, ratio_y, ratio_x
def img_center_padding(img_np, pad_ratio):
ori_w, ori_h = img_np.shape[:2]
w = round((1 + pad_ratio) * ori_w)
h = round((1 + pad_ratio) * ori_h)
if len(img_np.shape) > 2:
img_pad_np = np.zeros((w, h, img_np.shape[2]), dtype=np.uint8)
else:
img_pad_np = np.zeros((w, h), dtype=np.uint8)
offset_h, offset_w = (w - img_np.shape[0]) // 2, (h - img_np.shape[1]) // 2
img_pad_np[offset_h: offset_h + img_np.shape[0]:, offset_w: offset_w + img_np.shape[1]] = img_np
return img_pad_np
def resize_image_keepaspect_np(img, max_tgt_size):
"""
similar to ImageOps.contain(img_pil, (img_size, img_size)) # keep the same aspect ratio
"""
h, w = img.shape[:2]
ratio = max_tgt_size / max(h, w)
new_h, new_w = round(h * ratio), round(w * ratio)
return cv2.resize(img, dsize=(new_w, new_h), interpolation=cv2.INTER_AREA)
def center_crop_according_to_mask(img, mask, aspect_standard, enlarge_ratio):
"""
img: [H, W, 3]
mask: [H, W]
"""
if len(mask.shape) > 2:
mask = mask[:, :, 0]
ys, xs = np.where(mask > 0)
if len(xs) == 0 or len(ys) == 0:
raise Exception("empty mask")
x_min = np.min(xs)
x_max = np.max(xs)
y_min = np.min(ys)
y_max = np.max(ys)
center_x, center_y = img.shape[1]//2, img.shape[0]//2
half_w = max(abs(center_x - x_min), abs(center_x - x_max))
half_h = max(abs(center_y - y_min), abs(center_y - y_max))
half_w_raw = half_w
half_h_raw = half_h
aspect = half_h / half_w
if aspect >= aspect_standard:
half_w = round(half_h / aspect_standard)
else:
half_h = round(half_w * aspect_standard)
if half_h > center_y:
half_w = round(half_h_raw / aspect_standard)
half_h = half_h_raw
if half_w > center_x:
half_h = round(half_w_raw * aspect_standard)
half_w = half_w_raw
if abs(enlarge_ratio[0] - 1) > 0.01 or abs(enlarge_ratio[1] - 1) > 0.01:
enlarge_ratio_min, enlarge_ratio_max = enlarge_ratio
enlarge_ratio_max_real = min(center_y / half_h, center_x / half_w)
enlarge_ratio_max = min(enlarge_ratio_max_real, enlarge_ratio_max)
enlarge_ratio_min = min(enlarge_ratio_max_real, enlarge_ratio_min)
enlarge_ratio_cur = np.random.rand() * (enlarge_ratio_max - enlarge_ratio_min) + enlarge_ratio_min
half_h, half_w = round(enlarge_ratio_cur * half_h), round(enlarge_ratio_cur * half_w)
assert half_h <= center_y
assert half_w <= center_x
assert abs(half_h / half_w - aspect_standard) < 0.03
offset_x = center_x - half_w
offset_y = center_y - half_h
new_img = img[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w]
new_mask = mask[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w]
return new_img, new_mask, offset_x, offset_y
def preprocess_image(rgb_path, mask_path, intr, pad_ratio, bg_color,
max_tgt_size, aspect_standard, enlarge_ratio,
render_tgt_size, multiply, need_mask=True,
get_shape_param=False):
rgb = np.array(Image.open(rgb_path))
rgb_raw = rgb.copy()
if pad_ratio > 0:
rgb = img_center_padding(rgb, pad_ratio)
rgb = rgb / 255.0
if need_mask:
if rgb.shape[2] < 4:
if mask_path is not None:
# mask = np.array(Image.open(mask_path))
mask = (np.array(Image.open(mask_path)) > 180) * 255
else:
from rembg import remove
mask = remove(rgb_raw[:, :, (2, 1, 0)])[:, :, -1] # np require [bgr]
print("rmbg mask: ", mask.min(), mask.max(), mask.shape)
if pad_ratio > 0:
mask = img_center_padding(mask, pad_ratio)
mask = mask / 255.0
else:
# rgb: [H, W, 4]
assert rgb.shape[2] == 4
mask = rgb[:, :, 3] # [H, W]
else:
# just placeholder
mask = np.ones_like(rgb[:, :, 0])
if len(mask.shape) > 2:
mask = mask[:, :, 0]
# mask = (mask > 0.5).astype(np.float32)
mask = mask.astype(np.float32)
if (rgb.shape[0] == rgb.shape[1]) and (rgb.shape[0]==512):
rgb = cv2.resize(rgb, (mask.shape[1], mask.shape[0]), interpolation=cv2.INTER_AREA)
rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None])
# # resize to specific size require by preprocessor of flame-estimator.
# rgb = resize_image_keepaspect_np(rgb, max_tgt_size)
# mask = resize_image_keepaspect_np(mask, max_tgt_size)
# crop image to enlarge human area.
rgb, mask, offset_x, offset_y = center_crop_according_to_mask(rgb, mask, aspect_standard, enlarge_ratio)
if intr is not None:
intr[0, 2] -= offset_x
intr[1, 2] -= offset_y
# resize to render_tgt_size for training
tgt_hw_size, ratio_y, ratio_x = calc_new_tgt_size_by_aspect(cur_hw=rgb.shape[:2],
aspect_standard=aspect_standard,
tgt_size=render_tgt_size, multiply=multiply)
rgb = cv2.resize(rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA)
mask = cv2.resize(mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA)
if intr is not None:
intr = scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y)
assert abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5, f"{intr[0, 2] * 2}, {rgb.shape[1]}"
assert abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5, f"{intr[1, 2] * 2}, {rgb.shape[0]}"
intr[0, 2] = rgb.shape[1] // 2
intr[1, 2] = rgb.shape[0] // 2
rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) # [1, 3, H, W]
mask = torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0) # [1, 1, H, W]
# read shape_param
shape_param = None
if get_shape_param:
cor_flame_path = os.path.join(os.path.dirname(os.path.dirname(rgb_path)),'canonical_flame_param.npz')
flame_p = np.load(cor_flame_path)
shape_param = torch.FloatTensor(flame_p['shape'])
return rgb, mask, intr, shape_param
def extract_imgs_from_video(video_file, save_root, fps):
print(f"extract_imgs_from_video:{video_file}")
vr = decord.VideoReader(video_file)
for i in range(0, len(vr), fps):
frame = vr[i].asnumpy()
save_path = os.path.join(save_root, f"{i:05d}.jpg")
cv2.imwrite(save_path, frame[:, :, (2, 1, 0)])
def predict_motion_seqs_from_images(image_folder:str, save_root, fps=6):
id_name = os.path.splitext(os.path.basename(image_folder))[0]
if os.path.isfile(image_folder) and (image_folder.endswith("mp4") or image_folder.endswith("move")):
save_frame_root = os.path.join(save_root, "extracted_frames", id_name)
if not os.path.exists(save_frame_root):
os.makedirs(save_frame_root, exist_ok=True)
extract_imgs_from_video(video_file=image_folder, save_root=save_frame_root, fps=fps)
else:
print("skip extract_imgs_from_video......")
image_folder = save_frame_root
image_folder_abspath = os.path.abspath(image_folder)
print(f"predict motion seq:{image_folder_abspath}")
save_flame_root = image_folder + "_flame_params_mhmr"
if not os.path.exists(save_flame_root):
cmd = f"cd thirdparty/multi-hmr && python infer_batch.py --data_root {image_folder_abspath} --out_folder {image_folder_abspath} --crop_head --crop_hand --pad_ratio 0.2 --smplify"
os.system(cmd)
else:
print("skip predict flame.........")
return save_flame_root, image_folder
def render_flame_mesh(data, render_intrs, c2ws, human_model_path="./model_zoo/human_parametric_models"):
from lam.models.rendering.flame_model.flame import FlameHead, FlameHeadSubdivided
from lam.models.rendering.utils.vis_utils import render_mesh
subdivide = 2
flame_sub_model = FlameHeadSubdivided(
300,
100,
add_teeth=True,
add_shoulder=False,
flame_model_path='model_zoo/human_parametric_models/flame_assets/flame/flame2023.pkl',
flame_lmk_embedding_path="model_zoo/human_parametric_models/flame_assets/flame/landmark_embedding_with_eyes.npy",
flame_template_mesh_path="model_zoo/human_parametric_models/flame_assets/flame/head_template_mesh.obj",
flame_parts_path="model_zoo/human_parametric_models/flame_assets/flame/FLAME_masks.pkl",
subdivide_num=subdivide
).cuda()
shape = data['betas'].to('cuda')
flame_param = {}
flame_param['expr'] = data['expr'].to('cuda')
flame_param['rotation'] = data['rotation'].to('cuda')
flame_param['neck'] = data['neck_pose'].to('cuda')
flame_param['jaw'] = data['jaw_pose'].to('cuda')
flame_param['eyes'] = data['eyes_pose'].to('cuda')
flame_param['translation'] = data['translation'].to('cuda')
v_cano = flame_sub_model.get_cano_verts(
shape.unsqueeze(0)
)
ret = flame_sub_model.animation_forward(
v_cano.repeat(flame_param['expr'].shape[0], 1, 1),
shape.unsqueeze(0).repeat(flame_param['expr'].shape[0], 1),
flame_param['expr'],
flame_param['rotation'],
flame_param['neck'],
flame_param['jaw'],
flame_param['eyes'],
flame_param['translation'],
zero_centered_at_root_node=False,
return_landmarks=False,
return_verts_cano=True,
# static_offset=batch_data['static_offset'].to('cuda'),
static_offset=None,
)
flame_face = flame_sub_model.faces.cpu().squeeze().numpy()
mesh_render_list = []
num_view = flame_param['expr'].shape[0]
for v_idx in range(num_view):
intr = render_intrs[v_idx]
cam_param = {"focal": torch.tensor([intr[0, 0], intr[1, 1]]),
"princpt": torch.tensor([intr[0, 2], intr[1, 2]])}
render_shape = int(cam_param['princpt'][1]* 2), int(cam_param['princpt'][0] * 2) # require h, w
vertices = ret["animated"][v_idx].cpu().squeeze()
c2w = c2ws[v_idx]
w2c = torch.inverse(c2w)
R = w2c[:3, :3]
T = w2c[:3, 3]
vertices = vertices @ R + T
mesh_render, is_bkg = render_mesh(vertices,
flame_face, cam_param,
np.ones((render_shape[0],render_shape[1], 3), dtype=np.float32)*255,
return_bg_mask=True)
mesh_render = mesh_render.astype(np.uint8)
mesh_render_list.append(mesh_render)
mesh_render = np.stack(mesh_render_list)
return mesh_render
def _load_pose(frame_info):
c2w = torch.eye(4)
c2w = np.array(frame_info["transform_matrix"])
c2w[:3, 1:3] *= -1
c2w = torch.FloatTensor(c2w)
intrinsic = torch.eye(4)
intrinsic[0, 0] = frame_info["fl_x"]
intrinsic[1, 1] = frame_info["fl_y"]
intrinsic[0, 2] = frame_info["cx"]
intrinsic[1, 2] = frame_info["cy"]
intrinsic = intrinsic.float()
return c2w, intrinsic
def load_flame_params(flame_file_path, teeth_bs=None):
flame_param = dict(np.load(flame_file_path, allow_pickle=True))
flame_param_tensor = {}
flame_param_tensor['expr'] = torch.FloatTensor(flame_param['expr'])[0]
flame_param_tensor['rotation'] = torch.FloatTensor(flame_param['rotation'])[0]
flame_param_tensor['neck_pose'] = torch.FloatTensor(flame_param['neck_pose'])[0]
flame_param_tensor['jaw_pose'] = torch.FloatTensor(flame_param['jaw_pose'])[0]
flame_param_tensor['eyes_pose'] = torch.FloatTensor(flame_param['eyes_pose'])[0]
flame_param_tensor['translation'] = torch.FloatTensor(flame_param['translation'])[0]
if teeth_bs is not None:
flame_param_tensor['teeth_bs'] = torch.FloatTensor(teeth_bs)
return flame_param_tensor
def prepare_motion_seqs(motion_seqs_dir, image_folder, save_root, fps,
bg_color, aspect_standard, enlarge_ratio,
render_image_res, need_mask, multiply=16,
vis_motion=False, shape_param=None, test_sample=False, cross_id=False, src_driven=["", ""], max_squen_length=300):
if motion_seqs_dir is None:
assert image_folder is not None
motion_seqs_dir, image_folder = predict_motion_seqs_from_images(image_folder, save_root, fps)
# source images
c2ws, intrs, bg_colors = [], [], []
flame_params = []
# read shape_param
if shape_param is None:
print("using driven shape params")
cor_flame_path = os.path.join(os.path.dirname(motion_seqs_dir),'canonical_flame_param.npz')
flame_p = np.load(cor_flame_path)
shape_param = torch.FloatTensor(flame_p['shape'])
transforms_json = os.path.join(os.path.dirname(motion_seqs_dir), f"transforms.json")
with open(transforms_json) as fp:
data = json.load(fp)
all_frames = data["frames"]
all_frames = sorted(all_frames, key=lambda x: x["flame_param_path"])[:max_squen_length]
print(f"len motion_seq:{len(all_frames)}")
frame_ids = np.array(list(range(len(all_frames))))
if test_sample:
print("sub sample 50 frames for testing.")
sample_num = 50
frame_ids = frame_ids[np.linspace(0, frame_ids.shape[0]-1, sample_num).astype(np.int32)]
print("sub sample ids:", frame_ids)
teeth_bs_pth = os.path.join(os.path.dirname(motion_seqs_dir), "tracked_teeth_bs.npz")
if os.path.exists(teeth_bs_pth):
teeth_bs_lst = np.load(teeth_bs_pth)['expr_teeth']
else:
teeth_bs_lst = None
for idx, frame_id in enumerate(frame_ids):
frame_info = all_frames[frame_id]
flame_path = os.path.join(os.path.dirname(motion_seqs_dir), frame_info["flame_param_path"])
if image_folder is not None:
file_name = os.path.splitext(os.path.basename(flame_path))[0]
frame_path = os.path.join(image_folder, file_name + ".png")
if not os.path.exists(frame_path):
frame_path = os.path.join(image_folder, file_name + ".jpg")
teeth_bs = teeth_bs_lst[frame_id] if (teeth_bs_lst is not None and len(teeth_bs_lst) > frame_id) else None
flame_param = load_flame_params(flame_path, teeth_bs)
c2w, intrinsic = _load_pose(frame_info)
intrinsic = scale_intrs(intrinsic, 0.5, 0.5)
c2ws.append(c2w)
bg_colors.append(bg_color)
intrs.append(intrinsic)
flame_params.append(flame_param)
c2ws = torch.stack(c2ws, dim=0) # [N, 4, 4]
intrs = torch.stack(intrs, dim=0) # [N, 4, 4]
bg_colors = torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1).repeat(1, 3) # [N, 3]
flame_params_tmp = defaultdict(list)
for flame in flame_params:
for k, v in flame.items():
flame_params_tmp[k].append(v)
for k, v in flame_params_tmp.items():
flame_params_tmp[k] = torch.stack(v)
flame_params = flame_params_tmp
# TODO check different betas for same person
flame_params["betas"] = shape_param
if vis_motion:
motion_render = render_flame_mesh(flame_params, intrs, c2ws)
else:
motion_render = None
# add batch dim
for k, v in flame_params.items():
flame_params[k] = v.unsqueeze(0)
# print(k, flame_params[k].shape, "motion_seq")
c2ws = c2ws.unsqueeze(0)
intrs = intrs.unsqueeze(0)
bg_colors = bg_colors.unsqueeze(0)
motion_seqs = {}
motion_seqs["render_c2ws"] = c2ws
motion_seqs["render_intrs"] = intrs
motion_seqs["render_bg_colors"] = bg_colors
motion_seqs["flame_params"] = flame_params
# motion_seqs["rgbs"] = rgbs
motion_seqs["vis_motion_render"] = motion_render
return motion_seqs