|
from collections import defaultdict |
|
import os |
|
import json |
|
import numpy as np |
|
from PIL import Image |
|
import cv2 |
|
import torch |
|
|
|
|
|
def scale_intrs(intrs, ratio_x, ratio_y): |
|
if len(intrs.shape) >= 3: |
|
intrs[:, 0] = intrs[:, 0] * ratio_x |
|
intrs[:, 1] = intrs[:, 1] * ratio_y |
|
else: |
|
intrs[0] = intrs[0] * ratio_x |
|
intrs[1] = intrs[1] * ratio_y |
|
return intrs |
|
|
|
def calc_new_tgt_size(cur_hw, tgt_size, multiply): |
|
ratio = tgt_size / min(cur_hw) |
|
tgt_size = int(ratio * cur_hw[0]), int(ratio * cur_hw[1]) |
|
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply |
|
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1] |
|
return tgt_size, ratio_y, ratio_x |
|
|
|
def calc_new_tgt_size_by_aspect(cur_hw, aspect_standard, tgt_size, multiply): |
|
assert abs(cur_hw[0] / cur_hw[1] - aspect_standard) < 0.03 |
|
tgt_size = tgt_size * aspect_standard, tgt_size |
|
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply |
|
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1] |
|
return tgt_size, ratio_y, ratio_x |
|
|
|
|
|
def img_center_padding(img_np, pad_ratio): |
|
|
|
ori_w, ori_h = img_np.shape[:2] |
|
|
|
w = round((1 + pad_ratio) * ori_w) |
|
h = round((1 + pad_ratio) * ori_h) |
|
|
|
if len(img_np.shape) > 2: |
|
img_pad_np = np.zeros((w, h, img_np.shape[2]), dtype=np.uint8) |
|
else: |
|
img_pad_np = np.zeros((w, h), dtype=np.uint8) |
|
offset_h, offset_w = (w - img_np.shape[0]) // 2, (h - img_np.shape[1]) // 2 |
|
img_pad_np[offset_h: offset_h + img_np.shape[0]:, offset_w: offset_w + img_np.shape[1]] = img_np |
|
|
|
return img_pad_np |
|
|
|
|
|
def resize_image_keepaspect_np(img, max_tgt_size): |
|
""" |
|
similar to ImageOps.contain(img_pil, (img_size, img_size)) # keep the same aspect ratio |
|
""" |
|
h, w = img.shape[:2] |
|
ratio = max_tgt_size / max(h, w) |
|
new_h, new_w = round(h * ratio), round(w * ratio) |
|
return cv2.resize(img, dsize=(new_w, new_h), interpolation=cv2.INTER_AREA) |
|
|
|
|
|
def center_crop_according_to_mask(img, mask, aspect_standard, enlarge_ratio): |
|
""" |
|
img: [H, W, 3] |
|
mask: [H, W] |
|
""" |
|
if len(mask.shape) > 2: |
|
mask = mask[:, :, 0] |
|
ys, xs = np.where(mask > 0) |
|
|
|
if len(xs) == 0 or len(ys) == 0: |
|
raise Exception("empty mask") |
|
|
|
x_min = np.min(xs) |
|
x_max = np.max(xs) |
|
y_min = np.min(ys) |
|
y_max = np.max(ys) |
|
|
|
center_x, center_y = img.shape[1]//2, img.shape[0]//2 |
|
|
|
half_w = max(abs(center_x - x_min), abs(center_x - x_max)) |
|
half_h = max(abs(center_y - y_min), abs(center_y - y_max)) |
|
half_w_raw = half_w |
|
half_h_raw = half_h |
|
aspect = half_h / half_w |
|
|
|
if aspect >= aspect_standard: |
|
half_w = round(half_h / aspect_standard) |
|
else: |
|
half_h = round(half_w * aspect_standard) |
|
|
|
if half_h > center_y: |
|
half_w = round(half_h_raw / aspect_standard) |
|
half_h = half_h_raw |
|
if half_w > center_x: |
|
half_h = round(half_w_raw * aspect_standard) |
|
half_w = half_w_raw |
|
|
|
if abs(enlarge_ratio[0] - 1) > 0.01 or abs(enlarge_ratio[1] - 1) > 0.01: |
|
enlarge_ratio_min, enlarge_ratio_max = enlarge_ratio |
|
enlarge_ratio_max_real = min(center_y / half_h, center_x / half_w) |
|
enlarge_ratio_max = min(enlarge_ratio_max_real, enlarge_ratio_max) |
|
enlarge_ratio_min = min(enlarge_ratio_max_real, enlarge_ratio_min) |
|
enlarge_ratio_cur = np.random.rand() * (enlarge_ratio_max - enlarge_ratio_min) + enlarge_ratio_min |
|
half_h, half_w = round(enlarge_ratio_cur * half_h), round(enlarge_ratio_cur * half_w) |
|
|
|
assert half_h <= center_y |
|
assert half_w <= center_x |
|
assert abs(half_h / half_w - aspect_standard) < 0.03 |
|
|
|
offset_x = center_x - half_w |
|
offset_y = center_y - half_h |
|
|
|
new_img = img[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w] |
|
new_mask = mask[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w] |
|
|
|
return new_img, new_mask, offset_x, offset_y |
|
|
|
|
|
def preprocess_image(rgb_path, mask_path, intr, pad_ratio, bg_color, |
|
max_tgt_size, aspect_standard, enlarge_ratio, |
|
render_tgt_size, multiply, need_mask=True, |
|
get_shape_param=False): |
|
rgb = np.array(Image.open(rgb_path)) |
|
rgb_raw = rgb.copy() |
|
if pad_ratio > 0: |
|
rgb = img_center_padding(rgb, pad_ratio) |
|
|
|
rgb = rgb / 255.0 |
|
if need_mask: |
|
if rgb.shape[2] < 4: |
|
if mask_path is not None: |
|
|
|
mask = (np.array(Image.open(mask_path)) > 180) * 255 |
|
else: |
|
from rembg import remove |
|
mask = remove(rgb_raw[:, :, (2, 1, 0)])[:, :, -1] |
|
print("rmbg mask: ", mask.min(), mask.max(), mask.shape) |
|
if pad_ratio > 0: |
|
mask = img_center_padding(mask, pad_ratio) |
|
mask = mask / 255.0 |
|
else: |
|
|
|
assert rgb.shape[2] == 4 |
|
mask = rgb[:, :, 3] |
|
else: |
|
|
|
mask = np.ones_like(rgb[:, :, 0]) |
|
if len(mask.shape) > 2: |
|
mask = mask[:, :, 0] |
|
|
|
|
|
mask = mask.astype(np.float32) |
|
if (rgb.shape[0] == rgb.shape[1]) and (rgb.shape[0]==512): |
|
rgb = cv2.resize(rgb, (mask.shape[1], mask.shape[0]), interpolation=cv2.INTER_AREA) |
|
rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
rgb, mask, offset_x, offset_y = center_crop_according_to_mask(rgb, mask, aspect_standard, enlarge_ratio) |
|
if intr is not None: |
|
intr[0, 2] -= offset_x |
|
intr[1, 2] -= offset_y |
|
|
|
|
|
tgt_hw_size, ratio_y, ratio_x = calc_new_tgt_size_by_aspect(cur_hw=rgb.shape[:2], |
|
aspect_standard=aspect_standard, |
|
tgt_size=render_tgt_size, multiply=multiply) |
|
rgb = cv2.resize(rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA) |
|
mask = cv2.resize(mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA) |
|
|
|
if intr is not None: |
|
intr = scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y) |
|
assert abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5, f"{intr[0, 2] * 2}, {rgb.shape[1]}" |
|
assert abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5, f"{intr[1, 2] * 2}, {rgb.shape[0]}" |
|
intr[0, 2] = rgb.shape[1] // 2 |
|
intr[1, 2] = rgb.shape[0] // 2 |
|
|
|
rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) |
|
mask = torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0) |
|
|
|
|
|
shape_param = None |
|
if get_shape_param: |
|
cor_flame_path = os.path.join(os.path.dirname(os.path.dirname(rgb_path)),'canonical_flame_param.npz') |
|
flame_p = np.load(cor_flame_path) |
|
shape_param = torch.FloatTensor(flame_p['shape']) |
|
|
|
return rgb, mask, intr, shape_param |
|
|
|
|
|
def extract_imgs_from_video(video_file, save_root, fps): |
|
print(f"extract_imgs_from_video:{video_file}") |
|
vr = decord.VideoReader(video_file) |
|
for i in range(0, len(vr), fps): |
|
frame = vr[i].asnumpy() |
|
save_path = os.path.join(save_root, f"{i:05d}.jpg") |
|
cv2.imwrite(save_path, frame[:, :, (2, 1, 0)]) |
|
|
|
|
|
def predict_motion_seqs_from_images(image_folder:str, save_root, fps=6): |
|
id_name = os.path.splitext(os.path.basename(image_folder))[0] |
|
if os.path.isfile(image_folder) and (image_folder.endswith("mp4") or image_folder.endswith("move")): |
|
save_frame_root = os.path.join(save_root, "extracted_frames", id_name) |
|
if not os.path.exists(save_frame_root): |
|
os.makedirs(save_frame_root, exist_ok=True) |
|
extract_imgs_from_video(video_file=image_folder, save_root=save_frame_root, fps=fps) |
|
else: |
|
print("skip extract_imgs_from_video......") |
|
image_folder = save_frame_root |
|
|
|
image_folder_abspath = os.path.abspath(image_folder) |
|
print(f"predict motion seq:{image_folder_abspath}") |
|
save_flame_root = image_folder + "_flame_params_mhmr" |
|
if not os.path.exists(save_flame_root): |
|
cmd = f"cd thirdparty/multi-hmr && python infer_batch.py --data_root {image_folder_abspath} --out_folder {image_folder_abspath} --crop_head --crop_hand --pad_ratio 0.2 --smplify" |
|
os.system(cmd) |
|
else: |
|
print("skip predict flame.........") |
|
return save_flame_root, image_folder |
|
|
|
|
|
def render_flame_mesh(data, render_intrs, c2ws, human_model_path="./model_zoo/human_parametric_models"): |
|
from lam.models.rendering.flame_model.flame import FlameHead, FlameHeadSubdivided |
|
from lam.models.rendering.utils.vis_utils import render_mesh |
|
|
|
subdivide = 2 |
|
flame_sub_model = FlameHeadSubdivided( |
|
300, |
|
100, |
|
add_teeth=True, |
|
add_shoulder=False, |
|
flame_model_path='model_zoo/human_parametric_models/flame_assets/flame/flame2023.pkl', |
|
flame_lmk_embedding_path="model_zoo/human_parametric_models/flame_assets/flame/landmark_embedding_with_eyes.npy", |
|
flame_template_mesh_path="model_zoo/human_parametric_models/flame_assets/flame/head_template_mesh.obj", |
|
flame_parts_path="model_zoo/human_parametric_models/flame_assets/flame/FLAME_masks.pkl", |
|
subdivide_num=subdivide |
|
).cuda() |
|
|
|
shape = data['betas'].to('cuda') |
|
flame_param = {} |
|
flame_param['expr'] = data['expr'].to('cuda') |
|
flame_param['rotation'] = data['rotation'].to('cuda') |
|
flame_param['neck'] = data['neck_pose'].to('cuda') |
|
flame_param['jaw'] = data['jaw_pose'].to('cuda') |
|
flame_param['eyes'] = data['eyes_pose'].to('cuda') |
|
flame_param['translation'] = data['translation'].to('cuda') |
|
|
|
v_cano = flame_sub_model.get_cano_verts( |
|
shape.unsqueeze(0) |
|
) |
|
|
|
ret = flame_sub_model.animation_forward( |
|
v_cano.repeat(flame_param['expr'].shape[0], 1, 1), |
|
shape.unsqueeze(0).repeat(flame_param['expr'].shape[0], 1), |
|
flame_param['expr'], |
|
flame_param['rotation'], |
|
flame_param['neck'], |
|
flame_param['jaw'], |
|
flame_param['eyes'], |
|
flame_param['translation'], |
|
zero_centered_at_root_node=False, |
|
return_landmarks=False, |
|
return_verts_cano=True, |
|
|
|
static_offset=None, |
|
) |
|
|
|
flame_face = flame_sub_model.faces.cpu().squeeze().numpy() |
|
mesh_render_list = [] |
|
num_view = flame_param['expr'].shape[0] |
|
for v_idx in range(num_view): |
|
intr = render_intrs[v_idx] |
|
cam_param = {"focal": torch.tensor([intr[0, 0], intr[1, 1]]), |
|
"princpt": torch.tensor([intr[0, 2], intr[1, 2]])} |
|
render_shape = int(cam_param['princpt'][1]* 2), int(cam_param['princpt'][0] * 2) |
|
|
|
vertices = ret["animated"][v_idx].cpu().squeeze() |
|
|
|
c2w = c2ws[v_idx] |
|
w2c = torch.inverse(c2w) |
|
R = w2c[:3, :3] |
|
T = w2c[:3, 3] |
|
vertices = vertices @ R + T |
|
|
|
mesh_render, is_bkg = render_mesh(vertices, |
|
flame_face, cam_param, |
|
np.ones((render_shape[0],render_shape[1], 3), dtype=np.float32)*255, |
|
return_bg_mask=True) |
|
mesh_render = mesh_render.astype(np.uint8) |
|
mesh_render_list.append(mesh_render) |
|
mesh_render = np.stack(mesh_render_list) |
|
return mesh_render |
|
|
|
|
|
def _load_pose(frame_info): |
|
c2w = torch.eye(4) |
|
c2w = np.array(frame_info["transform_matrix"]) |
|
c2w[:3, 1:3] *= -1 |
|
c2w = torch.FloatTensor(c2w) |
|
|
|
intrinsic = torch.eye(4) |
|
intrinsic[0, 0] = frame_info["fl_x"] |
|
intrinsic[1, 1] = frame_info["fl_y"] |
|
intrinsic[0, 2] = frame_info["cx"] |
|
intrinsic[1, 2] = frame_info["cy"] |
|
intrinsic = intrinsic.float() |
|
|
|
return c2w, intrinsic |
|
|
|
|
|
def load_flame_params(flame_file_path, teeth_bs=None): |
|
flame_param = dict(np.load(flame_file_path, allow_pickle=True)) |
|
flame_param_tensor = {} |
|
flame_param_tensor['expr'] = torch.FloatTensor(flame_param['expr'])[0] |
|
flame_param_tensor['rotation'] = torch.FloatTensor(flame_param['rotation'])[0] |
|
flame_param_tensor['neck_pose'] = torch.FloatTensor(flame_param['neck_pose'])[0] |
|
flame_param_tensor['jaw_pose'] = torch.FloatTensor(flame_param['jaw_pose'])[0] |
|
flame_param_tensor['eyes_pose'] = torch.FloatTensor(flame_param['eyes_pose'])[0] |
|
flame_param_tensor['translation'] = torch.FloatTensor(flame_param['translation'])[0] |
|
if teeth_bs is not None: |
|
flame_param_tensor['teeth_bs'] = torch.FloatTensor(teeth_bs) |
|
|
|
return flame_param_tensor |
|
|
|
|
|
def prepare_motion_seqs(motion_seqs_dir, image_folder, save_root, fps, |
|
bg_color, aspect_standard, enlarge_ratio, |
|
render_image_res, need_mask, multiply=16, |
|
vis_motion=False, shape_param=None, test_sample=False, cross_id=False, src_driven=["", ""], max_squen_length=300): |
|
if motion_seqs_dir is None: |
|
assert image_folder is not None |
|
motion_seqs_dir, image_folder = predict_motion_seqs_from_images(image_folder, save_root, fps) |
|
|
|
|
|
c2ws, intrs, bg_colors = [], [], [] |
|
flame_params = [] |
|
|
|
|
|
if shape_param is None: |
|
print("using driven shape params") |
|
cor_flame_path = os.path.join(os.path.dirname(motion_seqs_dir),'canonical_flame_param.npz') |
|
flame_p = np.load(cor_flame_path) |
|
shape_param = torch.FloatTensor(flame_p['shape']) |
|
|
|
transforms_json = os.path.join(os.path.dirname(motion_seqs_dir), f"transforms.json") |
|
with open(transforms_json) as fp: |
|
data = json.load(fp) |
|
all_frames = data["frames"] |
|
all_frames = sorted(all_frames, key=lambda x: x["flame_param_path"])[:max_squen_length] |
|
print(f"len motion_seq:{len(all_frames)}") |
|
frame_ids = np.array(list(range(len(all_frames)))) |
|
if test_sample: |
|
print("sub sample 50 frames for testing.") |
|
sample_num = 50 |
|
frame_ids = frame_ids[np.linspace(0, frame_ids.shape[0]-1, sample_num).astype(np.int32)] |
|
print("sub sample ids:", frame_ids) |
|
|
|
teeth_bs_pth = os.path.join(os.path.dirname(motion_seqs_dir), "tracked_teeth_bs.npz") |
|
if os.path.exists(teeth_bs_pth): |
|
teeth_bs_lst = np.load(teeth_bs_pth)['expr_teeth'] |
|
else: |
|
teeth_bs_lst = None |
|
|
|
for idx, frame_id in enumerate(frame_ids): |
|
frame_info = all_frames[frame_id] |
|
flame_path = os.path.join(os.path.dirname(motion_seqs_dir), frame_info["flame_param_path"]) |
|
|
|
if image_folder is not None: |
|
file_name = os.path.splitext(os.path.basename(flame_path))[0] |
|
frame_path = os.path.join(image_folder, file_name + ".png") |
|
if not os.path.exists(frame_path): |
|
frame_path = os.path.join(image_folder, file_name + ".jpg") |
|
|
|
teeth_bs = teeth_bs_lst[frame_id] if (teeth_bs_lst is not None and len(teeth_bs_lst) > frame_id) else None |
|
flame_param = load_flame_params(flame_path, teeth_bs) |
|
|
|
c2w, intrinsic = _load_pose(frame_info) |
|
intrinsic = scale_intrs(intrinsic, 0.5, 0.5) |
|
|
|
c2ws.append(c2w) |
|
bg_colors.append(bg_color) |
|
intrs.append(intrinsic) |
|
flame_params.append(flame_param) |
|
|
|
c2ws = torch.stack(c2ws, dim=0) |
|
intrs = torch.stack(intrs, dim=0) |
|
bg_colors = torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1).repeat(1, 3) |
|
|
|
flame_params_tmp = defaultdict(list) |
|
for flame in flame_params: |
|
for k, v in flame.items(): |
|
flame_params_tmp[k].append(v) |
|
for k, v in flame_params_tmp.items(): |
|
flame_params_tmp[k] = torch.stack(v) |
|
flame_params = flame_params_tmp |
|
|
|
flame_params["betas"] = shape_param |
|
|
|
if vis_motion: |
|
motion_render = render_flame_mesh(flame_params, intrs, c2ws) |
|
else: |
|
motion_render = None |
|
|
|
|
|
for k, v in flame_params.items(): |
|
flame_params[k] = v.unsqueeze(0) |
|
|
|
c2ws = c2ws.unsqueeze(0) |
|
intrs = intrs.unsqueeze(0) |
|
bg_colors = bg_colors.unsqueeze(0) |
|
|
|
motion_seqs = {} |
|
motion_seqs["render_c2ws"] = c2ws |
|
motion_seqs["render_intrs"] = intrs |
|
motion_seqs["render_bg_colors"] = bg_colors |
|
motion_seqs["flame_params"] = flame_params |
|
|
|
motion_seqs["vis_motion_render"] = motion_render |
|
return motion_seqs |
|
|