Ethan18's picture
Upload folder using huggingface_hub
5c48b81 verified
# Copyright (c) 2024-2025, The Alibaba 3DAIGC Team Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import traceback
import time
import torch
import os
import argparse
import mcubes
import trimesh
import numpy as np
from PIL import Image
from glob import glob
from omegaconf import OmegaConf
from tqdm.auto import tqdm
from accelerate.logging import get_logger
from lam.runners.infer.head_utils import prepare_motion_seqs, preprocess_image
from .base_inferrer import Inferrer
from lam.datasets.cam_utils import build_camera_principle, build_camera_standard, surrounding_views_linspace, create_intrinsics
from lam.utils.logging import configure_logger
from lam.runners import REGISTRY_RUNNERS
from lam.utils.video import images_to_video
from lam.utils.hf_hub import wrap_model_hub
from lam.models.modeling_lam import ModelLAM
from safetensors.torch import load_file
import moviepy.editor as mpy
logger = get_logger(__name__)
def parse_configs():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str)
parser.add_argument('--infer', type=str)
args, unknown = parser.parse_known_args()
cfg = OmegaConf.create()
cli_cfg = OmegaConf.from_cli(unknown)
# parse from ENV
if os.environ.get('APP_INFER') is not None:
args.infer = os.environ.get('APP_INFER')
if os.environ.get('APP_MODEL_NAME') is not None:
cli_cfg.model_name = os.environ.get('APP_MODEL_NAME')
if args.config is not None:
cfg = OmegaConf.load(args.config)
cfg_train = OmegaConf.load(args.config)
cfg.source_size = cfg_train.dataset.source_image_res
cfg.render_size = cfg_train.dataset.render_image.high
_relative_path = os.path.join(cfg_train.experiment.parent, cfg_train.experiment.child, os.path.basename(cli_cfg.model_name).split('_')[-1])
cfg.save_tmp_dump = os.path.join("exps", 'save_tmp', _relative_path)
cfg.image_dump = os.path.join("exps", 'images', _relative_path)
cfg.video_dump = os.path.join("exps", 'videos', _relative_path)
cfg.mesh_dump = os.path.join("exps", 'meshes', _relative_path)
if args.infer is not None:
cfg_infer = OmegaConf.load(args.infer)
cfg.merge_with(cfg_infer)
cfg.setdefault("save_tmp_dump", os.path.join("exps", cli_cfg.model_name, 'save_tmp'))
cfg.setdefault("image_dump", os.path.join("exps", cli_cfg.model_name, 'images'))
cfg.setdefault('video_dump', os.path.join("dumps", cli_cfg.model_name, 'videos'))
cfg.setdefault('mesh_dump', os.path.join("dumps", cli_cfg.model_name, 'meshes'))
cfg.motion_video_read_fps = 6
cfg.merge_with(cli_cfg)
"""
[required]
model_name: str
image_input: str
export_video: bool
export_mesh: bool
[special]
source_size: int
render_size: int
video_dump: str
mesh_dump: str
[default]
render_views: int
render_fps: int
mesh_size: int
mesh_thres: float
frame_size: int
logger: str
"""
cfg.setdefault('logger', 'INFO')
# assert not (args.config is not None and args.infer is not None), "Only one of config and infer should be provided"
assert cfg.model_name is not None, "model_name is required"
if not os.environ.get('APP_ENABLED', None):
assert cfg.image_input is not None, "image_input is required"
assert cfg.export_video or cfg.export_mesh, \
"At least one of export_video or export_mesh should be True"
cfg.app_enabled = False
else:
cfg.app_enabled = True
return cfg
@REGISTRY_RUNNERS.register('infer.lam')
class LAMInferrer(Inferrer):
EXP_TYPE: str = 'lam'
def __init__(self):
super().__init__()
self.cfg = parse_configs()
"""
configure_logger(
stream_level=self.cfg.logger,
log_level=self.cfg.logger,
)
"""
self.model: LAMInferrer = self._build_model(self.cfg).to(self.device)
def _build_model(self, cfg):
"""
from lam.models import model_dict
hf_model_cls = wrap_model_hub(model_dict[self.EXP_TYPE])
model = hf_model_cls.from_pretrained(cfg.model_name)
"""
from lam.models import ModelLAM
model = ModelLAM(**cfg.model)
resume = os.path.join(cfg.model_name, "model.safetensors")
print("==="*16*3)
print("loading pretrained weight from:", resume)
if resume.endswith('safetensors'):
ckpt = load_file(resume, device='cpu')
else:
ckpt = torch.load(resume, map_location='cpu')
state_dict = model.state_dict()
for k, v in ckpt.items():
if k in state_dict:
if state_dict[k].shape == v.shape:
state_dict[k].copy_(v)
else:
print(f"WARN] mismatching shape for param {k}: ckpt {v.shape} != model {state_dict[k].shape}, ignored.")
else:
print(f"WARN] unexpected param {k}: {v.shape}")
print("finish loading pretrained weight from:", resume)
print("==="*16*3)
return model
def _default_source_camera(self, dist_to_center: float = 2.0, batch_size: int = 1, device: torch.device = torch.device('cpu')):
# return: (N, D_cam_raw)
canonical_camera_extrinsics = torch.tensor([[
[1, 0, 0, 0],
[0, 0, -1, -dist_to_center],
[0, 1, 0, 0],
]], dtype=torch.float32, device=device)
canonical_camera_intrinsics = create_intrinsics(
f=0.75,
c=0.5,
device=device,
).unsqueeze(0)
source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
return source_camera.repeat(batch_size, 1)
def _default_render_cameras(self, n_views: int, batch_size: int = 1, device: torch.device = torch.device('cpu')):
# return: (N, M, D_cam_render)
render_camera_extrinsics = surrounding_views_linspace(n_views=n_views, device=device)
render_camera_intrinsics = create_intrinsics(
f=0.75,
c=0.5,
device=device,
).unsqueeze(0).repeat(render_camera_extrinsics.shape[0], 1, 1)
render_cameras = build_camera_standard(render_camera_extrinsics, render_camera_intrinsics)
return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)
def infer_planes(self, image: torch.Tensor, source_cam_dist: float):
N = image.shape[0]
source_camera = self._default_source_camera(dist_to_center=source_cam_dist, batch_size=N, device=self.device)
planes = self.model.forward_planes(image, source_camera)
assert N == planes.shape[0]
return planes
def infer_video(self, planes: torch.Tensor, frame_size: int, render_size: int, render_views: int, render_fps: int, dump_video_path: str):
N = planes.shape[0]
render_cameras = self._default_render_cameras(n_views=render_views, batch_size=N, device=self.device)
render_anchors = torch.zeros(N, render_cameras.shape[1], 2, device=self.device)
render_resolutions = torch.ones(N, render_cameras.shape[1], 1, device=self.device) * render_size
render_bg_colors = torch.ones(N, render_cameras.shape[1], 1, device=self.device, dtype=torch.float32) * 0. # 1.
frames = []
for i in range(0, render_cameras.shape[1], frame_size):
frames.append(
self.model.synthesizer(
planes=planes,
cameras=render_cameras[:, i:i+frame_size],
anchors=render_anchors[:, i:i+frame_size],
resolutions=render_resolutions[:, i:i+frame_size],
bg_colors=render_bg_colors[:, i:i+frame_size],
region_size=render_size,
)
)
# merge frames
frames = {
k: torch.cat([r[k] for r in frames], dim=1)
for k in frames[0].keys()
}
# dump
os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
for k, v in frames.items():
if k == 'images_rgb':
images_to_video(
images=v[0],
output_path=dump_video_path,
fps=render_fps,
gradio_codec=self.cfg.app_enabled,
)
def infer_mesh(self, planes: torch.Tensor, mesh_size: int, mesh_thres: float, dump_mesh_path: str):
grid_out = self.model.synthesizer.forward_grid(
planes=planes,
grid_size=mesh_size,
)
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(), mesh_thres)
vtx = vtx / (mesh_size - 1) * 2 - 1
vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=self.device).unsqueeze(0)
vtx_colors = self.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].squeeze(0).cpu().numpy() # (0, 1)
vtx_colors = (vtx_colors * 255).astype(np.uint8)
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
# dump
os.makedirs(os.path.dirname(dump_mesh_path), exist_ok=True)
mesh.export(dump_mesh_path)
def add_audio_to_video(self, video_path, out_path, audio_path):
from moviepy.editor import VideoFileClip, AudioFileClip
video_clip = VideoFileClip(video_path)
audio_clip = AudioFileClip(audio_path)
video_clip_with_audio = video_clip.set_audio(audio_clip)
video_clip_with_audio.write_videofile(out_path, codec='libx264', audio_codec='aac')
print(f"Audio added successfully at {out_path}")
def save_imgs_2_video(self, img_lst, v_pth, fps):
from moviepy.editor import ImageSequenceClip
images = [image.astype(np.uint8) for image in img_lst]
clip = ImageSequenceClip(images, fps=fps)
clip.write_videofile(v_pth, codec='libx264')
print(f"Video saved successfully at {v_pth}")
def infer_single(self, image_path: str,
motion_seqs_dir,
motion_img_dir,
motion_video_read_fps,
export_video: bool,
export_mesh: bool,
dump_tmp_dir:str, # require by extracting motion seq from video, to save some results
dump_image_dir:str,
dump_video_path: str,
dump_mesh_path: str,
gaga_track_type: str):
source_size = self.cfg.source_size
render_size = self.cfg.render_size
render_fps = self.cfg.render_fps
aspect_standard = 1.0/1.0
motion_img_need_mask = self.cfg.get("motion_img_need_mask", False) # False
vis_motion = self.cfg.get("vis_motion", False) # False
save_ply = self.cfg.get("save_ply", False) # False
save_img = self.cfg.get("save_img", False) # False
rendered_bg = 1.
ref_bg = 1.
mask_path = image_path.replace("/images/", "/fg_masks/").replace(".jpg", ".png")
if ref_bg < 1.:
if "VFHQ_TEST" in image_path:
mask_path = image_path.replace("/VFHQ_TEST/", "/mask/").replace("/images/", "/mask/").replace(".png", ".jpg")
else:
mask_path = image_path.replace("/vfhq_test_nooffset_export/", "/mask/").replace("/images/", "/mask/").replace(".png", ".jpg")
if not os.path.exists(mask_path):
print("Warning: Mask path not exists:", mask_path)
mask_path = None
else:
print("load mask from:", mask_path)
image, _, _, shape_param = preprocess_image(image_path, mask_path=mask_path, intr=None, pad_ratio=0, bg_color=ref_bg,
max_tgt_size=None, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1.0],
render_tgt_size=source_size, multiply=14, need_mask=True, get_shape_param=True)
# save masked image for vis
save_ref_img_path = os.path.join(dump_tmp_dir, "refer_" + os.path.basename(image_path))
vis_ref_img = (image[0].permute(1, 2 ,0).cpu().detach().numpy() * 255).astype(np.uint8)
Image.fromarray(vis_ref_img).save(save_ref_img_path)
# prepare motion seq
test_sample=self.cfg.get("test_sample", False)
# test_sample=True
src = image_path.split('/')[-3]
driven = motion_seqs_dir.split('/')[-2]
src_driven = [src, driven]
motion_seq = prepare_motion_seqs(motion_seqs_dir, motion_img_dir, save_root=dump_tmp_dir, fps=motion_video_read_fps,
bg_color=rendered_bg, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1,0],
render_image_res=render_size, multiply=16,
need_mask=motion_img_need_mask, vis_motion=vis_motion,
shape_param=shape_param, test_sample=test_sample, cross_id=self.cfg.get("cross_id", False), src_driven=src_driven)
# return
motion_seq["flame_params"]["betas"] = shape_param.unsqueeze(0)
start_time = time.time()
device="cuda"
dtype=torch.float32
# dtype=torch.bfloat16
self.model.to(dtype)
print("start to inference...................")
with torch.no_grad():
# TODO check device and dtype
res = self.model.infer_single_view(image.unsqueeze(0).to(device, dtype), None, None,
render_c2ws=motion_seq["render_c2ws"].to(device),
render_intrs=motion_seq["render_intrs"].to(device),
render_bg_colors=motion_seq["render_bg_colors"].to(device),
flame_params={k:v.to(device) for k, v in motion_seq["flame_params"].items()})
print(f"time elapsed: {time.time() - start_time}")
rgb = res["comp_rgb"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1
rgb = (np.clip(rgb, 0, 1.0) * 255).astype(np.uint8)
only_pred = rgb
if vis_motion:
# print(rgb.shape, motion_seq["vis_motion_render"].shape)
import cv2
vis_ref_img = np.tile(cv2.resize(vis_ref_img, (rgb[0].shape[1], rgb[0].shape[0]), interpolation=cv2.INTER_AREA)[None, :, :, :], (rgb.shape[0], 1, 1, 1))
blend_ratio = 0.7
blend_res = ((1 - blend_ratio) * rgb + blend_ratio * motion_seq["vis_motion_render"]).astype(np.uint8)
# rgb = np.concatenate([rgb, motion_seq["vis_motion_render"], blend_res, vis_ref_img], axis=2)
rgb = np.concatenate([vis_ref_img, rgb, motion_seq["vis_motion_render"]], axis=2)
os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
# images_to_video(rgb, output_path=dump_video_path, fps=render_fps, gradio_codec=False, verbose=True)
self.save_imgs_2_video(rgb, dump_video_path, render_fps)
base_vid = motion_seqs_dir.strip('/').split('/')[-1]
audio_path = os.path.join(motion_seqs_dir, base_vid+".wav")
dump_video_path_wa = dump_video_path.replace(".mp4", "_audio.mp4")
self.add_audio_to_video(dump_video_path, dump_video_path_wa, audio_path)
if save_img and dump_image_dir is not None:
for i in range(rgb.shape[0]):
save_file = os.path.join(dump_image_dir, f"{i:04d}.png")
Image.fromarray(only_pred[i]).save(save_file)
if save_ply and dump_mesh_path is not None:
res["3dgs"][i][0][0].save_ply(os.path.join(dump_image_dir, f"{i:04d}.ply"))
dump_cano_dir = "./exps/cano_gs/"
if not os.path.exists(dump_cano_dir):
os.system(f"mkdir -p {dump_cano_dir}")
cano_ply_pth = os.path.join(dump_cano_dir, os.path.basename(dump_image_dir) + ".ply")
# res['cano_gs_lst'][0].save_ply(cano_ply_pth, rgb2sh=True, offset2xyz=False)
cano_ply_pth = os.path.join(dump_cano_dir, os.path.basename(dump_image_dir) + "_gs_offset.ply")
res['cano_gs_lst'][0].save_ply(cano_ply_pth, rgb2sh=False, offset2xyz=True)
# res['cano_gs_lst'][0].save_ply("tmp.ply", rgb2sh=False, offset2xyz=True)
def save_color_points(points, colors, sv_pth, sv_fd="debug_vis/dataloader/"):
points = points.squeeze().detach().cpu().numpy()
colors = colors.squeeze().detach().cpu().numpy()
sv_pth = os.path.join(sv_fd, sv_pth)
if not os.path.exists(sv_fd):
os.system(f"mkdir -p {sv_fd}")
with open(sv_pth, 'w') as of:
for point, color in zip(points, colors):
print('v', point[0], point[1], point[2], color[0], color[1], color[2], file=of)
# save canonical color point clouds
save_color_points(res['cano_gs_lst'][0].xyz, res["cano_gs_lst"][0].shs[:, 0, :], "framework_img.obj", sv_fd=dump_cano_dir)
# Export the template mesh to an OBJ file
import trimesh
vtxs = res['cano_gs_lst'][0].xyz - res['cano_gs_lst'][0].offset
vtxs = vtxs.detach().cpu().numpy()
faces = self.model.renderer.flame_model.faces.detach().cpu().numpy()
mesh = trimesh.Trimesh(vertices=vtxs, faces=faces)
mesh.export(os.path.join(dump_cano_dir, os.path.basename(dump_image_dir) + '_shaped_mesh.obj'))
# Export textured deformed mesh
import lam.models.rendering.utils.mesh_utils as mesh_utils
vtxs = res['cano_gs_lst'][0].xyz.detach().cpu()
faces = self.model.renderer.flame_model.faces.detach().cpu()
colors = res['cano_gs_lst'][0].shs.squeeze(1).detach().cpu()
pth = os.path.join(dump_cano_dir, os.path.basename(dump_image_dir) + '_textured_mesh.obj')
print("Save textured mesh to:", pth)
mesh_utils.save_obj(pth, vtxs, faces, textures=colors, texture_type="vertex")
def infer(self):
image_paths = []
# hard code
if os.path.isfile(self.cfg.image_input):
omit_prefix = os.path.dirname(self.cfg.image_input)
image_paths = [self.cfg.image_input]
else:
# ids = sorted(os.listdir(self.cfg.image_input))
# image_paths = [os.path.join(self.cfg.image_input, e, "images/00000_00.png") for e in ids]
image_paths = glob(os.path.join(self.cfg.image_input, "*.jpg"))
omit_prefix = self.cfg.image_input
gaga_track_type = ""
for image_path in tqdm(image_paths, disable=not self.accelerator.is_local_main_process):
try:
image_path = os.path.join(output_dir, "images/00000_00.png")
# mask_path = image_path.replace("/images/", "/fg_masks/").replace(".jpg", ".png")
motion_seqs_dir = self.cfg.motion_seqs_dir
print("motion_seqs_dir:", motion_seqs_dir)
# prepare dump paths
image_name = os.path.basename(image_path)
uid = image_name.split('.')[0]
subdir_path = os.path.dirname(image_path).replace(omit_prefix, '')
subdir_path = subdir_path[1:] if subdir_path.startswith('/') else subdir_path
# hard code
subdir_path = gaga_track_type
uid = os.path.basename(os.path.dirname(os.path.dirname(image_path)))
print("subdir_path and uid:", subdir_path, uid)
dump_video_path = os.path.join(
self.cfg.video_dump,
subdir_path,
f'{uid}.mp4',
)
dump_image_dir = os.path.join(
self.cfg.image_dump,
subdir_path,
f'{uid}'
)
dump_tmp_dir = os.path.join(
self.cfg.image_dump,
subdir_path,
"tmp_res"
)
dump_mesh_path = os.path.join(
self.cfg.mesh_dump,
subdir_path,
# f'{uid}.ply',
)
os.makedirs(dump_image_dir, exist_ok=True)
os.makedirs(dump_tmp_dir, exist_ok=True)
os.makedirs(dump_mesh_path, exist_ok=True)
# if os.path.exists(dump_video_path):
# print(f"skip:{image_path}")
# continue
self.infer_single(
image_path,
motion_seqs_dir=motion_seqs_dir,
motion_img_dir=self.cfg.motion_img_dir,
motion_video_read_fps=self.cfg.motion_video_read_fps,
export_video=self.cfg.export_video,
export_mesh=self.cfg.export_mesh,
dump_tmp_dir=dump_tmp_dir,
dump_image_dir=dump_image_dir,
dump_video_path=dump_video_path,
dump_mesh_path=dump_mesh_path,
gaga_track_type=gaga_track_type
)
except:
traceback.print_exc()