Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import fnmatch | |
| import inspect | |
| import itertools | |
| import logging | |
| import types | |
| from typing import ( | |
| Any, | |
| Callable, | |
| Dict, | |
| Iterable, | |
| List, | |
| Mapping, | |
| Optional, | |
| Set, | |
| Tuple, | |
| Type, | |
| Union, | |
| ) | |
| import hydra | |
| import torch | |
| import torch.nn as nn | |
| from omegaconf import DictConfig | |
| from torch import Tensor | |
| class Optimizer: | |
| def __init__(self, optimizer, schedulers=None) -> None: | |
| self.optimizer = optimizer | |
| self.schedulers = schedulers | |
| self._validate_optimizer_schedulers() | |
| self.step_schedulers(0.0, 0) | |
| def _validate_optimizer_schedulers(self): | |
| if self.schedulers is None: | |
| return | |
| for _, set_of_schedulers in enumerate(self.schedulers): | |
| for option, _ in set_of_schedulers.items(): | |
| assert option in self.optimizer.defaults, ( | |
| "Optimizer option " | |
| f"{option} not found in {self.optimizer}. Valid options are " | |
| f"{self.optimizer.defaults.keys()}" | |
| ) | |
| def step_schedulers(self, where: float, step: int) -> None: | |
| if self.schedulers is None: | |
| return | |
| for i, param_group in enumerate(self.optimizer.param_groups): | |
| for option, scheduler in self.schedulers[i].items(): | |
| if "step" in inspect.signature(scheduler.__call__).parameters: | |
| new_value = scheduler(step=step, where=where) | |
| elif ( | |
| hasattr(scheduler, "scheduler") | |
| and "step" | |
| in inspect.signature(scheduler.scheduler.__call__).parameters | |
| ): | |
| # To handle ValueScaler wrappers | |
| new_value = scheduler(step=step, where=where) | |
| else: | |
| new_value = scheduler(where) | |
| param_group[option] = new_value | |
| def step(self, where, step, closure=None): | |
| self.step_schedulers(where, step) | |
| return self.optimizer.step(closure) | |
| def zero_grad(self, *args, **kwargs): | |
| return self.optimizer.zero_grad(*args, **kwargs) | |
| def set_default_parameters( | |
| scheduler_cfgs: List[DictConfig], all_parameter_names: Set[str] | |
| ) -> None: | |
| """Set up the "default" scheduler with the right parameters. | |
| Args: | |
| scheduler_cgfs: A list of scheduler configs, where each scheduler also | |
| specifies which parameters it applies to, based on the names of parameters | |
| or the class of the modules. At most one scheduler is allowed to skip this | |
| specification, which is used as a "default" specification for any remaining | |
| parameters. | |
| all_parameter_names: Names of all the parameters to consider. | |
| """ | |
| constraints = [ | |
| scheduler_cfg.parameter_names | |
| for scheduler_cfg in scheduler_cfgs | |
| if scheduler_cfg.parameter_names is not None | |
| ] | |
| if len(constraints) == 0: | |
| default_params = set(all_parameter_names) | |
| else: | |
| default_params = all_parameter_names - set.union(*constraints) | |
| default_count = 0 | |
| for scheduler_cfg in scheduler_cfgs: | |
| if scheduler_cfg.parameter_names is None: | |
| scheduler_cfg.parameter_names = default_params | |
| default_count += 1 | |
| assert default_count <= 1, "Only one scheduler per option can be default" | |
| if default_count == 0: | |
| # No default scheduler specified, add a default, but without any scheduler | |
| # for that option | |
| scheduler_cfgs.append({"parameter_names": default_params}) | |
| def name_constraints_to_parameters( | |
| param_constraints: List[Set[str]], named_parameters: Dict[str, Tensor] | |
| ) -> List[torch.nn.Parameter]: | |
| """Return parameters which match the intersection of parameter constraints. | |
| Note that this returns the parameters themselves, not their names. | |
| Args: | |
| param_constraints: A list, with each element being a set of allowed parameters. | |
| named_parameters: Mapping from a parameter name to the parameter itself. | |
| Returns: | |
| A list containing the parameters which overlap with _each_ constraint set from | |
| param_constraints. | |
| """ | |
| matching_names = set.intersection(*param_constraints) | |
| return [value for name, value in named_parameters.items() if name in matching_names] | |
| def map_scheduler_cfgs_to_param_groups( | |
| all_scheduler_cfgs: Iterable[List[Dict]], | |
| named_parameters: Dict[str, Tensor], | |
| ) -> Tuple[List[Dict[Any, Any]], List[Dict[str, List[torch.nn.Parameter]]]]: | |
| """Produce parameter groups corresponding to all the scheduler configs. | |
| Takes all the scheduler configs, each of which applies to a specific optimizer | |
| option (like "lr" or "weight_decay") and has a set of parameter names which it | |
| applies to, and produces a final set of param groups where each param group | |
| covers all the options which apply to a particular set of parameters. | |
| Args: | |
| all_scheduler_cfgs: All the scheduler configs covering every option. | |
| named_parameters: Mapping from a parameter name to the parameter itself. | |
| Returns: | |
| Tuple of lists of schedulers and param_groups, where schedulers[i] | |
| applies to param_groups[i]. | |
| """ | |
| scheduler_cfgs_per_param_group = itertools.product(*all_scheduler_cfgs) | |
| schedulers = [] | |
| param_groups = [] | |
| for scheduler_cfgs in scheduler_cfgs_per_param_group: | |
| param_constraints = [ | |
| scheduler_cfg["parameter_names"] for scheduler_cfg in scheduler_cfgs | |
| ] | |
| matching_parameters = name_constraints_to_parameters( | |
| param_constraints, named_parameters | |
| ) | |
| if len(matching_parameters) == 0: # If no overlap of parameters, skip | |
| continue | |
| schedulers_for_group = { | |
| scheduler_cfg["option"]: scheduler_cfg["scheduler"] | |
| for scheduler_cfg in scheduler_cfgs | |
| if "option" in scheduler_cfg | |
| } | |
| schedulers.append(schedulers_for_group) | |
| param_groups.append({"params": matching_parameters}) | |
| return schedulers, param_groups | |
| def validate_param_group_params(param_groups: List[Dict], model: nn.Module): | |
| """Check that the param groups are non-overlapping and cover all the parameters. | |
| Args: | |
| param_groups: List of all param groups | |
| model: Model to validate against. The check ensures that all the model | |
| parameters are part of param_groups | |
| """ | |
| for pg in param_groups: | |
| # no param should be repeated within a group | |
| assert len(pg["params"]) == len(set(pg["params"])) | |
| parameters = [set(param_group["params"]) for param_group in param_groups] | |
| model_parameters = {parameter for _, parameter in model.named_parameters()} | |
| for p1, p2 in itertools.permutations(parameters, 2): | |
| assert p1.isdisjoint(p2), "Scheduler generated param_groups should be disjoint" | |
| assert set.union(*parameters) == model_parameters, ( | |
| "Scheduler generated param_groups must include all parameters of the model." | |
| f" Found {len(set.union(*parameters))} params whereas model has" | |
| f" {len(model_parameters)} params" | |
| ) | |
| def unix_module_cls_pattern_to_parameter_names( | |
| filter_module_cls_names: List[str], | |
| module_cls_to_param_names: Dict[Type, str], | |
| ) -> Union[None, Set[str]]: | |
| """Returns param names which pass the filters specified in filter_module_cls_names. | |
| Args: | |
| filter_module_cls_names: A list of filter strings containing class names, like | |
| ["torch.nn.LayerNorm", "torch.nn.BatchNorm2d"] | |
| module_cls_to_param_names: Mapping from module classes to the parameter names | |
| they contain. See `get_module_cls_to_param_names`. | |
| """ | |
| if filter_module_cls_names is None: | |
| return set() | |
| allowed_parameter_names = [] | |
| for module_cls_name in filter_module_cls_names: | |
| module_cls = hydra.utils.get_class(module_cls_name) | |
| if module_cls not in module_cls_to_param_names: | |
| raise AssertionError( | |
| f"module_cls_name {module_cls_name} does not " | |
| "match any classes in the model" | |
| ) | |
| matching_parameters = module_cls_to_param_names[module_cls] | |
| assert ( | |
| len(matching_parameters) > 0 | |
| ), f"module_cls_name {module_cls_name} does not contain any parameters in the model" | |
| logging.info( | |
| f"Matches for module_cls_name [{module_cls_name}]: {matching_parameters} " | |
| ) | |
| allowed_parameter_names.append(matching_parameters) | |
| return set.union(*allowed_parameter_names) | |
| def unix_param_pattern_to_parameter_names( | |
| filter_param_names: Optional[List[str]], | |
| parameter_names: Dict[str, torch.Tensor], | |
| ) -> Union[None, Set[str]]: | |
| """Returns param names which pass the filters specified in filter_param_names. | |
| Args: | |
| filter_param_names: A list of unix-style filter strings with optional | |
| wildcards, like ["block.2.*", "block.2.linear.weight"] | |
| module_cls_to_param_names: Mapping from module classes to the parameter names | |
| they contain. See `get_module_cls_to_param_names`. | |
| """ | |
| if filter_param_names is None: | |
| return set() | |
| allowed_parameter_names = [] | |
| for param_name in filter_param_names: | |
| matching_parameters = set(fnmatch.filter(parameter_names, param_name)) | |
| assert ( | |
| len(matching_parameters) >= 1 | |
| ), f"param_name {param_name} does not match any parameters in the model" | |
| logging.info(f"Matches for param_name [{param_name}]: {matching_parameters}") | |
| allowed_parameter_names.append(matching_parameters) | |
| return set.union(*allowed_parameter_names) | |
| def _unix_pattern_to_parameter_names( | |
| scheduler_cfg: DictConfig, | |
| parameter_names: Set[str], | |
| module_cls_to_param_names: Dict[Type, str], | |
| ) -> Union[None, Set[str]]: | |
| """Returns param names which pass the filters specified in scheduler_cfg. | |
| Args: | |
| scheduler_cfg: The config for the scheduler | |
| parameter_names: The set of all parameter names which will be filtered | |
| """ | |
| if "param_names" not in scheduler_cfg and "module_cls_names" not in scheduler_cfg: | |
| return None | |
| return unix_param_pattern_to_parameter_names( | |
| scheduler_cfg.get("param_names"), parameter_names | |
| ).union( | |
| unix_module_cls_pattern_to_parameter_names( | |
| scheduler_cfg.get("module_cls_names"), module_cls_to_param_names | |
| ) | |
| ) | |
| def get_module_cls_to_param_names( | |
| model: nn.Module, param_allowlist: Set[str] = None | |
| ) -> Dict[Type, str]: | |
| """Produce a mapping from all the modules classes to the names of parames they own. | |
| Only counts a parameter as part of the immediate parent module, i.e. recursive | |
| parents do not count. | |
| Args: | |
| model: Model to iterate over | |
| param_allowlist: If specified, only these param names will be processed | |
| """ | |
| module_cls_to_params = {} | |
| for module_name, module in model.named_modules(): | |
| module_cls = type(module) | |
| module_cls_to_params.setdefault(module_cls, set()) | |
| for param_name, _ in module.named_parameters(recurse=False): | |
| full_param_name = get_full_parameter_name(module_name, param_name) | |
| if param_allowlist is None or full_param_name in param_allowlist: | |
| module_cls_to_params[module_cls].add(full_param_name) | |
| return module_cls_to_params | |
| def construct_optimizer( | |
| model: torch.nn.Module, | |
| optimizer_conf: Any, | |
| options_conf: Mapping[str, List] = None, | |
| param_group_modifiers_conf: List[Callable] = None, | |
| param_allowlist: Optional[Set[str]] = None, | |
| validate_param_groups=True, | |
| ) -> Optimizer: | |
| """ | |
| Constructs a stochastic gradient descent or ADAM (or ADAMw) optimizer | |
| with momentum. i.e, constructs a torch.optim.Optimizer with zero-weight decay | |
| Batchnorm and/or no-update 1-D parameters support, based on the config. | |
| Supports wrapping the optimizer with Layer-wise Adaptive Rate Scaling | |
| (LARS): https://arxiv.org/abs/1708.03888 | |
| Args: | |
| model: model to perform stochastic gradient descent | |
| optimization or ADAM optimization. | |
| optimizer_conf: Hydra config consisting a partial torch optimizer like SGD or | |
| ADAM, still missing the params argument which this function provides to | |
| produce the final optimizer | |
| param_group_modifiers_conf: Optional user specified functions which can modify | |
| the final scheduler configs before the optimizer's param groups are built | |
| param_allowlist: The parameters to optimize. Parameters which are not part of | |
| this allowlist will be skipped. | |
| validate_param_groups: If enabled, valides that the produced param_groups don't | |
| overlap and cover all the model parameters. | |
| """ | |
| if param_allowlist is None: | |
| param_allowlist = {name for name, _ in model.named_parameters()} | |
| named_parameters = { | |
| name: param | |
| for name, param in model.named_parameters() | |
| if name in param_allowlist | |
| } | |
| if not options_conf: | |
| optimizer = hydra.utils.instantiate(optimizer_conf, named_parameters.values()) | |
| return Optimizer(optimizer) | |
| all_parameter_names = { | |
| name for name, _ in model.named_parameters() if name in param_allowlist | |
| } | |
| module_cls_to_all_param_names = get_module_cls_to_param_names( | |
| model, param_allowlist | |
| ) | |
| scheduler_cfgs_per_option = hydra.utils.instantiate(options_conf) | |
| all_scheduler_cfgs = [] | |
| for option, scheduler_cfgs in scheduler_cfgs_per_option.items(): | |
| for config in scheduler_cfgs: | |
| config.option = option | |
| config.parameter_names = _unix_pattern_to_parameter_names( | |
| config, all_parameter_names, module_cls_to_all_param_names | |
| ) | |
| set_default_parameters(scheduler_cfgs, all_parameter_names) | |
| all_scheduler_cfgs.append(scheduler_cfgs) | |
| if param_group_modifiers_conf: | |
| for custom_param_modifier in param_group_modifiers_conf: | |
| custom_param_modifier = hydra.utils.instantiate(custom_param_modifier) | |
| all_scheduler_cfgs = custom_param_modifier( | |
| scheduler_cfgs=all_scheduler_cfgs, model=model | |
| ) | |
| schedulers, param_groups = map_scheduler_cfgs_to_param_groups( | |
| all_scheduler_cfgs, named_parameters | |
| ) | |
| if validate_param_groups: | |
| validate_param_group_params(param_groups, model) | |
| optimizer = hydra.utils.instantiate(optimizer_conf, param_groups) | |
| return Optimizer(optimizer, schedulers) | |
| def get_full_parameter_name(module_name, param_name): | |
| if module_name == "": | |
| return param_name | |
| return f"{module_name}.{param_name}" | |
| class GradientClipper: | |
| """ | |
| Gradient clipping utils that works for DDP | |
| """ | |
| def __init__(self, max_norm: float = 1.0, norm_type: int = 2): | |
| assert isinstance(max_norm, (int, float)) or max_norm is None | |
| self.max_norm = max_norm if max_norm is None else float(max_norm) | |
| self.norm_type = norm_type | |
| def __call__(self, model: nn.Module): | |
| if self.max_norm is None: | |
| return # no-op | |
| nn.utils.clip_grad_norm_( | |
| model.parameters(), max_norm=self.max_norm, norm_type=self.norm_type | |
| ) | |
| class ValueScaler: | |
| def __init__(self, scheduler, mult_val: float): | |
| self.scheduler = scheduler | |
| self.mult_val = mult_val | |
| def __call__(self, *args, **kwargs): | |
| val = self.scheduler(*args, **kwargs) | |
| return val * self.mult_val | |
| def rgetattr(obj, rattrs: str = None): | |
| """ | |
| Like getattr(), but supports dotted notation for nested objects. | |
| rattrs is a str of form 'attr1.attr2', returns obj.attr1.attr2 | |
| """ | |
| if rattrs is None: | |
| return obj | |
| attrs = rattrs.split(".") | |
| for attr in attrs: | |
| obj = getattr(obj, attr) | |
| return obj | |
| def layer_decay_param_modifier( | |
| scheduler_cfgs: List[List[Dict]], | |
| model, | |
| layer_decay_value: float, | |
| layer_decay_min: Optional[float] = None, | |
| apply_to: Optional[str] = None, | |
| overrides: List[Dict] = (), | |
| ) -> List[List[Dict]]: | |
| """ | |
| Args | |
| - scheduler_cfgs: a list of omegaconf.ListConfigs. | |
| Each element in the list is a omegaconfg.DictConfig with the following structure | |
| { | |
| "scheduler": <some fvcore scheduler> | |
| "option": <value> possible options are "lr", "weight_decay" etc. | |
| "parameter_names": Set of str indicating param names that this scheduler applies to | |
| } | |
| - model: a model that implements a method `get_layer_id` that maps layer_name to an integer and | |
| and a method get_num_layers. | |
| Alternatively, use apply_to argument to select a specific component of the model. | |
| - layer_decay_value: float | |
| - layer_decay_min: min val for layer decay | |
| - apply_to: optional arg to select which component of the model to apply the the layer decay modifier to | |
| - overrides: to manually override lr for specific patterns. Is a list of dicts. Each dict, has keys "pattern", "value". | |
| Returns | |
| - scheduler_configs: same structure as the input, elements can be modified | |
| """ | |
| model = rgetattr(model, apply_to) | |
| num_layers = model.get_num_layers() + 1 | |
| layer_decays = [ | |
| layer_decay_value ** (num_layers - i) for i in range(num_layers + 1) | |
| ] | |
| if layer_decay_min is not None: | |
| layer_decays = [max(val, layer_decay_min) for val in layer_decays] | |
| final_scheduler_cfgs = [] | |
| # scheduler_cfgs is a list of lists | |
| for scheduler_cfg_group in scheduler_cfgs: | |
| curr_cfg_group = [] | |
| # scheduler_cfg_group is a list of dictionaries | |
| for scheduler_cfg in scheduler_cfg_group: | |
| if scheduler_cfg["option"] != "lr": | |
| curr_cfg_group.append(scheduler_cfg) | |
| continue | |
| # Need sorted so that the list of parameter names is deterministic and consistent | |
| # across re-runs of this job. Else it was causing issues with loading the optimizer | |
| # state during a job restart (D38591759) | |
| parameter_names = sorted(scheduler_cfg["parameter_names"]) | |
| # Only want one cfg group per layer | |
| layer_cfg_groups = {} | |
| for param_name in parameter_names: | |
| layer_id = num_layers | |
| this_scale = layer_decays[layer_id] | |
| if param_name.startswith(apply_to): | |
| layer_id = model.get_layer_id(param_name) | |
| this_scale = layer_decays[layer_id] | |
| # Overrides | |
| for override in overrides: | |
| if fnmatch.fnmatchcase(param_name, override["pattern"]): | |
| this_scale = float(override["value"]) | |
| layer_id = override["pattern"] | |
| break | |
| if layer_id not in layer_cfg_groups: | |
| curr_param = { | |
| "option": scheduler_cfg["option"], | |
| "scheduler": ValueScaler( | |
| scheduler_cfg["scheduler"], this_scale | |
| ), | |
| "parameter_names": {param_name}, | |
| } | |
| else: | |
| curr_param = layer_cfg_groups[layer_id] | |
| curr_param["parameter_names"].add(param_name) | |
| layer_cfg_groups[layer_id] = curr_param | |
| for layer_cfg in layer_cfg_groups.values(): | |
| curr_cfg_group.append(layer_cfg) | |
| final_scheduler_cfgs.append(curr_cfg_group) | |
| return final_scheduler_cfgs | |