File size: 5,373 Bytes
1687ca3
 
1f07c6f
b11b466
 
1687ca3
 
b11b466
1687ca3
b11b466
 
40774bb
1687ca3
40774bb
b11b466
 
 
 
 
1f07c6f
c0edcf5
 
 
 
 
b11b466
c0edcf5
1687ca3
 
 
c0edcf5
 
1687ca3
2bf436a
b11b466
 
 
 
 
1f07c6f
 
b11b466
 
 
 
1687ca3
 
b11b466
 
1f07c6f
b11b466
 
 
 
 
1f07c6f
 
b11b466
 
 
1f07c6f
b11b466
 
 
 
 
 
 
1f07c6f
 
1687ca3
 
b11b466
1f07c6f
b11b466
 
 
 
 
 
 
 
 
1f07c6f
b11b466
 
 
 
 
 
1f07c6f
 
1687ca3
b11b466
 
 
 
 
1687ca3
a3f064a
 
 
c0edcf5
 
1f07c6f
c0edcf5
1f07c6f
c0edcf5
 
1f07c6f
 
 
c0edcf5
 
 
 
 
1f07c6f
 
 
c0edcf5
1f07c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c8d1ca
1f07c6f
 
 
 
 
 
 
 
1687ca3
b11b466
1f07c6f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import openai
import gradio as gr
import fitz
from openai import OpenAI
import traceback

api_key = ""
selected_model = "gpt-4"
summary_text = ""
client = None
pdf_text = ""

def set_api_key(user_api_key):
    global api_key, client
    try:
        api_key = user_api_key.strip()
        if not api_key:
            return "❌ API Key 不能為空"
        client = OpenAI(api_key=api_key)
        client.chat.completions.create(
            model="gpt-4",
            messages=[{"role": "user", "content": "你好"}],
            max_tokens=5
        )
        return "✅ API Key 已設定並驗證成功"
    except Exception as e:
        return f"❌ API Key 設定失敗: {str(e)}"

def set_model(model_name):
    global selected_model
    selected_model = model_name
    return f"✅ 模型已選擇:{model_name}"

def extract_pdf_text(file_path):
    try:
        doc = fitz.open(file_path)
        text = ""
        for page_num, page in enumerate(doc):
            page_text = page.get_text()
            if page_text.strip():
                text += f"\n--- 第 {page_num + 1} 頁 ---\n{page_text}"
        doc.close()
        return text
    except Exception as e:
        return f"❌ PDF 解析錯誤: {str(e)}"

def generate_summary(pdf_file):
    global summary_text, pdf_text
    if not client:
        return "❌ 請先設定 API Key"
    if not pdf_file:
        return "❌ 請先上傳 PDF 文件"
    try:
        pdf_text = extract_pdf_text(pdf_file.name)
        if not pdf_text.strip():
            return "⚠️ 無法解析 PDF 文字"
        pdf_text_truncated = pdf_text[:8000]
        response = client.chat.completions.create(
            model=selected_model,
            messages=[
                {"role": "system", "content": "請用繁體中文整理以下 PDF 內容摘要。"},
                {"role": "user", "content": pdf_text_truncated}
            ],
            temperature=0.3
        )
        summary_text = response.choices[0].message.content
        return summary_text
    except Exception as e:
        print(traceback.format_exc())
        return f"❌ 摘要生成失敗: {str(e)}"

def ask_question(user_question):
    if not client:
        return "❌ 請先設定 API Key"
    if not summary_text and not pdf_text:
        return "❌ 請先生成 PDF 摘要"
    if not user_question.strip():
        return "❌ 請輸入問題"
    try:
        context = f"PDF 摘要:\n{summary_text}\n\n原始內容(部分):\n{pdf_text[:2000]}"
        response = client.chat.completions.create(
            model=selected_model,
            messages=[
                {"role": "system", "content": f"根據以下 PDF 內容回答問題,請用繁體中文回答:\n{context}"},
                {"role": "user", "content": user_question}
            ],
            temperature=0.2
        )
        return response.choices[0].message.content
    except Exception as e:
        print(traceback.format_exc())
        return f"❌ 問答生成失敗: {str(e)}"

def clear_all():
    global summary_text, pdf_text
    summary_text = ""
    pdf_text = ""
    return "", "", ""

with gr.Blocks(
    title="PDF 摘要助手",
    css="""
    .gradio-container {
        max-width: none !important;
        width: 100% !important;
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
        min-height: 100vh;
    }
    .main-content {
        max-width: 1600px !important;
        margin: 20px auto !important;
        padding: 30px !important;
        background: rgba(255, 255, 255, 0.95) !important;
        border-radius: 20px !important;
    }
    """
) as demo:
    with gr.Column():
        gr.Markdown("## 📄 PDF 摘要 & 問答助手")

        with gr.Tab("🔧 設定"):
            api_key_input = gr.Textbox(label="🔑 輸入 OpenAI API Key", type="password")
            api_key_status = gr.Textbox(label="API 狀態", interactive=False, value="等待設定 API Key...")
            api_key_btn = gr.Button("確認 API Key")
            api_key_btn.click(set_api_key, inputs=api_key_input, outputs=api_key_status)

            model_choice = gr.Radio(["gpt-4", "gpt-4.1", "gpt-4.5"], label="選擇 AI 模型", value="gpt-4")
            model_status = gr.Textbox(label="模型狀態", interactive=False, value="✅ 已選擇:gpt-4")
            model_choice.change(set_model, inputs=model_choice, outputs=model_status)

        with gr.Tab("📄 摘要"):
            pdf_upload = gr.File(label="上傳 PDF", file_types=[".pdf"])
            summary_btn = gr.Button("生成摘要")
            summary_output = gr.Textbox(label="PDF 摘要", lines=12)
            summary_btn.click(generate_summary, inputs=pdf_upload, outputs=summary_output)

        with gr.Tab("❓ 問答"):
            question_input = gr.Textbox(label="請輸入問題", lines=2)
            question_btn = gr.Button("送出問題")
            answer_output = gr.Textbox(label="AI 回答", lines=8)
            question_btn.click(ask_question, inputs=question_input, outputs=answer_output)
            question_input.submit(ask_question, inputs=question_input, outputs=answer_output)

        clear_btn = gr.Button("🗑️ 清除所有資料")
        clear_btn.click(clear_all, outputs=[summary_output, question_input, answer_output])

if __name__ == "__main__":
    demo.launch(show_error=True)