File size: 5,320 Bytes
1687ca3
 
 
b11b466
 
1687ca3
b11b466
1687ca3
b11b466
1687ca3
b11b466
 
40774bb
1687ca3
b11b466
40774bb
b11b466
 
 
 
a87aef6
b11b466
a87aef6
b11b466
a87aef6
 
 
 
 
 
 
b11b466
a87aef6
1687ca3
 
b11b466
1687ca3
a87aef6
 
1687ca3
2bf436a
b11b466
 
 
 
 
 
228df30
a87aef6
b11b466
 
 
 
1687ca3
 
b11b466
 
a87aef6
b11b466
 
a87aef6
b11b466
 
a87aef6
b11b466
 
 
 
a87aef6
 
b11b466
 
 
a87aef6
b11b466
 
 
 
a87aef6
b11b466
 
a87aef6
b11b466
 
a87aef6
1687ca3
 
b11b466
 
 
a87aef6
b11b466
 
a87aef6
b11b466
 
a87aef6
b11b466
 
 
 
 
a87aef6
b11b466
 
 
 
 
a87aef6
b11b466
 
a87aef6
1687ca3
b11b466
 
 
 
 
 
1687ca3
a87aef6
228df30
a87aef6
 
228df30
a87aef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228df30
a87aef6
 
 
 
 
 
 
 
1687ca3
b11b466
a87aef6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import openai
import gradio as gr
import fitz  # PyMuPDF
from openai import OpenAI
import traceback

# 全域變數
api_key = ""
selected_model = "gpt-4"
summary_text = ""
client = None
pdf_text = ""

def set_api_key(user_api_key):
    """設定 OpenAI API Key 並初始化客戶端"""
    global api_key, client
    try:
        api_key = user_api_key.strip()
        if not api_key:
            return "❌ API Key 不能為空"

        client = OpenAI(api_key=api_key)

        # 測試 API Key 是否有效
        client.chat.completions.create(
            model="gpt-4",
            messages=[{"role": "user", "content": "你好"}],
            max_tokens=5
        )

        return "✅ API Key 已設定並驗證成功"
    except Exception as e:
        return f"❌ API Key 設定失敗: {str(e)}"

def set_model(model_name):
    """設定選擇的模型"""
    global selected_model
    selected_model = model_name
    return f"✅ 模型已選擇:{model_name}"

def extract_pdf_text(file_path):
    """從 PDF 文件中提取文字"""
    try:
        doc = fitz.open(file_path)
        text = ""
        for page_num, page in enumerate(doc):
            page_text = page.get_text()
            if page_text.strip():
                text += f"\n--- 第 {page_num + 1} 頁 ---\n{page_text}"
        doc.close()
        return text
    except Exception as e:
        return f"❌ PDF 解析錯誤: {str(e)}"

def generate_summary(pdf_file):
    """從 PDF 內容生成摘要"""
    global summary_text, pdf_text

    if not client:
        return "❌ 請先設定 OpenAI API Key"

    if not pdf_file:
        return "❌ 請先上傳 PDF 文件"

    try:
        pdf_text = extract_pdf_text(pdf_file.name)
        if not pdf_text.strip():
            return "⚠️ 無法解析 PDF 文字,可能為純圖片 PDF 或空白文件。"

        pdf_text_truncated = pdf_text[:8000]  # 簡單限制長度
        response = client.chat.completions.create(
            model=selected_model,
            messages=[
                {"role": "system", "content": "請將以下 PDF 內容整理為條列式摘要,並用繁體中文回答:"},
                {"role": "user", "content": pdf_text_truncated}
            ],
            temperature=0.3
        )

        summary_text = response.choices[0].message.content
        return summary_text

    except Exception as e:
        print(f"錯誤詳情: {traceback.format_exc()}")
        return f"❌ 摘要生成失敗: {str(e)}"

def ask_question(user_question):
    """基於 PDF 內容回答問題"""
    if not client:
        return "❌ 請先設定 OpenAI API Key"

    if not summary_text and not pdf_text:
        return "❌ 請先生成 PDF 摘要"

    if not user_question.strip():
        return "❌ 請輸入問題"

    try:
        context = f"PDF 摘要:\n{summary_text}\n\n原始內容(部分):\n{pdf_text[:2000]}"
        response = client.chat.completions.create(
            model=selected_model,
            messages=[
                {"role": "system", "content": f"根據以下 PDF 內容回答用戶的問題,請用繁體中文回答並客觀精準:\n{context}"},
                {"role": "user", "content": user_question}
            ],
            temperature=0.2
        )
        return response.choices[0].message.content

    except Exception as e:
        print(f"錯誤詳情: {traceback.format_exc()}")
        return f"❌ 問答生成失敗: {str(e)}"

def clear_all():
    """清除所有資料"""
    global summary_text, pdf_text
    summary_text = ""
    pdf_text = ""
    return "", "", ""

# Gradio 介面
with gr.Blocks(title="PDF 摘要助手") as demo:
    gr.Markdown("# 📄 PDF 摘要 & 問答助手 (修正版)")

    with gr.Tab("🔧 設定"):
        api_key_input = gr.Textbox(label="🔑 輸入 OpenAI API Key", type="password")
        api_key_status = gr.Textbox(label="狀態", interactive=False, value="等待設定 API Key...")
        api_key_btn = gr.Button("確認設定 API Key")
        api_key_btn.click(set_api_key, inputs=api_key_input, outputs=api_key_status)

        model_choice = gr.Radio(["gpt-4", "gpt-4.1", "gpt-4.5"], label="選擇 AI 模型", value="gpt-4")
        model_status = gr.Textbox(label="模型狀態", interactive=False, value="✅ 已選擇:gpt-4")
        model_choice.change(set_model, inputs=model_choice, outputs=model_status)

    with gr.Tab("📄 PDF 摘要"):
        pdf_upload = gr.File(label="選擇 PDF 文件", file_types=[".pdf"])
        summary_btn = gr.Button("生成摘要")
        summary_output = gr.Textbox(label="PDF 摘要", lines=10)
        summary_btn.click(generate_summary, inputs=pdf_upload, outputs=summary_output)

    with gr.Tab("❓ 問答"):
        question_input = gr.Textbox(label="請輸入您的問題", lines=2)
        question_btn = gr.Button("送出問題")
        answer_output = gr.Textbox(label="AI 回答", lines=10)
        question_btn.click(ask_question, inputs=question_input, outputs=answer_output)
        question_input.submit(ask_question, inputs=question_input, outputs=answer_output)

    clear_btn = gr.Button("🗑️ 清除所有資料")
    clear_btn.click(clear_all, outputs=[summary_output, question_input, answer_output])

if __name__ == "__main__":
    demo.launch(show_error=True)