Spaces:
Sleeping
Sleeping
File size: 5,320 Bytes
1687ca3 b11b466 1687ca3 b11b466 1687ca3 b11b466 1687ca3 b11b466 40774bb 1687ca3 b11b466 40774bb b11b466 a87aef6 b11b466 a87aef6 b11b466 a87aef6 b11b466 a87aef6 1687ca3 b11b466 1687ca3 a87aef6 1687ca3 2bf436a b11b466 228df30 a87aef6 b11b466 1687ca3 b11b466 a87aef6 b11b466 a87aef6 b11b466 a87aef6 b11b466 a87aef6 b11b466 a87aef6 b11b466 a87aef6 b11b466 a87aef6 b11b466 a87aef6 1687ca3 b11b466 a87aef6 b11b466 a87aef6 b11b466 a87aef6 b11b466 a87aef6 b11b466 a87aef6 b11b466 a87aef6 1687ca3 b11b466 1687ca3 a87aef6 228df30 a87aef6 228df30 a87aef6 228df30 a87aef6 1687ca3 b11b466 a87aef6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import openai
import gradio as gr
import fitz # PyMuPDF
from openai import OpenAI
import traceback
# 全域變數
api_key = ""
selected_model = "gpt-4"
summary_text = ""
client = None
pdf_text = ""
def set_api_key(user_api_key):
"""設定 OpenAI API Key 並初始化客戶端"""
global api_key, client
try:
api_key = user_api_key.strip()
if not api_key:
return "❌ API Key 不能為空"
client = OpenAI(api_key=api_key)
# 測試 API Key 是否有效
client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "你好"}],
max_tokens=5
)
return "✅ API Key 已設定並驗證成功"
except Exception as e:
return f"❌ API Key 設定失敗: {str(e)}"
def set_model(model_name):
"""設定選擇的模型"""
global selected_model
selected_model = model_name
return f"✅ 模型已選擇:{model_name}"
def extract_pdf_text(file_path):
"""從 PDF 文件中提取文字"""
try:
doc = fitz.open(file_path)
text = ""
for page_num, page in enumerate(doc):
page_text = page.get_text()
if page_text.strip():
text += f"\n--- 第 {page_num + 1} 頁 ---\n{page_text}"
doc.close()
return text
except Exception as e:
return f"❌ PDF 解析錯誤: {str(e)}"
def generate_summary(pdf_file):
"""從 PDF 內容生成摘要"""
global summary_text, pdf_text
if not client:
return "❌ 請先設定 OpenAI API Key"
if not pdf_file:
return "❌ 請先上傳 PDF 文件"
try:
pdf_text = extract_pdf_text(pdf_file.name)
if not pdf_text.strip():
return "⚠️ 無法解析 PDF 文字,可能為純圖片 PDF 或空白文件。"
pdf_text_truncated = pdf_text[:8000] # 簡單限制長度
response = client.chat.completions.create(
model=selected_model,
messages=[
{"role": "system", "content": "請將以下 PDF 內容整理為條列式摘要,並用繁體中文回答:"},
{"role": "user", "content": pdf_text_truncated}
],
temperature=0.3
)
summary_text = response.choices[0].message.content
return summary_text
except Exception as e:
print(f"錯誤詳情: {traceback.format_exc()}")
return f"❌ 摘要生成失敗: {str(e)}"
def ask_question(user_question):
"""基於 PDF 內容回答問題"""
if not client:
return "❌ 請先設定 OpenAI API Key"
if not summary_text and not pdf_text:
return "❌ 請先生成 PDF 摘要"
if not user_question.strip():
return "❌ 請輸入問題"
try:
context = f"PDF 摘要:\n{summary_text}\n\n原始內容(部分):\n{pdf_text[:2000]}"
response = client.chat.completions.create(
model=selected_model,
messages=[
{"role": "system", "content": f"根據以下 PDF 內容回答用戶的問題,請用繁體中文回答並客觀精準:\n{context}"},
{"role": "user", "content": user_question}
],
temperature=0.2
)
return response.choices[0].message.content
except Exception as e:
print(f"錯誤詳情: {traceback.format_exc()}")
return f"❌ 問答生成失敗: {str(e)}"
def clear_all():
"""清除所有資料"""
global summary_text, pdf_text
summary_text = ""
pdf_text = ""
return "", "", ""
# Gradio 介面
with gr.Blocks(title="PDF 摘要助手") as demo:
gr.Markdown("# 📄 PDF 摘要 & 問答助手 (修正版)")
with gr.Tab("🔧 設定"):
api_key_input = gr.Textbox(label="🔑 輸入 OpenAI API Key", type="password")
api_key_status = gr.Textbox(label="狀態", interactive=False, value="等待設定 API Key...")
api_key_btn = gr.Button("確認設定 API Key")
api_key_btn.click(set_api_key, inputs=api_key_input, outputs=api_key_status)
model_choice = gr.Radio(["gpt-4", "gpt-4.1", "gpt-4.5"], label="選擇 AI 模型", value="gpt-4")
model_status = gr.Textbox(label="模型狀態", interactive=False, value="✅ 已選擇:gpt-4")
model_choice.change(set_model, inputs=model_choice, outputs=model_status)
with gr.Tab("📄 PDF 摘要"):
pdf_upload = gr.File(label="選擇 PDF 文件", file_types=[".pdf"])
summary_btn = gr.Button("生成摘要")
summary_output = gr.Textbox(label="PDF 摘要", lines=10)
summary_btn.click(generate_summary, inputs=pdf_upload, outputs=summary_output)
with gr.Tab("❓ 問答"):
question_input = gr.Textbox(label="請輸入您的問題", lines=2)
question_btn = gr.Button("送出問題")
answer_output = gr.Textbox(label="AI 回答", lines=10)
question_btn.click(ask_question, inputs=question_input, outputs=answer_output)
question_input.submit(ask_question, inputs=question_input, outputs=answer_output)
clear_btn = gr.Button("🗑️ 清除所有資料")
clear_btn.click(clear_all, outputs=[summary_output, question_input, answer_output])
if __name__ == "__main__":
demo.launch(show_error=True)
|