Spaces:
Sleeping
Sleeping
File size: 1,572 Bytes
4d9a0e6 dd3daa8 4d9a0e6 dd3daa8 4d9a0e6 dd3daa8 4d9a0e6 dd3daa8 4d9a0e6 dd3daa8 4d9a0e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import PyPDF2
import spacy
import subprocess
from collections import Counter
import heapq
import io
# 自動檢查、下載 spaCy 語言模型(en_core_web_sm),避免 Space 缺模型報錯
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
def read_pdf(file_stream):
"""讀取 PDF 文字內容"""
text = ''
reader = PyPDF2.PdfReader(file_stream)
for page in reader.pages:
text += page.extract_text() + ' '
return text.strip()
def extract_key_phrases(text):
"""擷取文章中的關鍵詞與專有名詞"""
doc = nlp(text)
key_phrases = [chunk.text for chunk in doc.noun_chunks] + [ent.text for ent in doc.ents]
return key_phrases
def score_sentences(text, key_phrases):
"""根據關鍵詞分數給每個句子計分"""
sentence_scores = {}
doc = nlp(text)
for sent in doc.sents:
for phrase in key_phrases:
if phrase in sent.text:
if sent in sentence_scores:
sentence_scores[sent] += 1
else:
sentence_scores[sent] = 1
return sentence_scores
def summarize_text(sentence_scores, num_points=5):
"""依據分數挑出重要句子並條列化輸出"""
summary_sentences = heapq.nlargest(num_points, sentence_scores, key=sentence_scores.get)
summary = '\n'.join([f"- {sent.text}" for sent in summary_sentences])
return summary
|