Spaces:
Sleeping
Sleeping
import openai | |
import gradio as gr | |
import fitz | |
from openai import OpenAI | |
import traceback | |
# 全域變數 | |
api_key = "" | |
selected_model = "gpt-4" | |
summary_text = "" | |
client = None | |
pdf_text = "" | |
def set_api_key(user_api_key): | |
"""設定 OpenAI API Key 並初始化客戶端""" | |
global api_key, client | |
try: | |
api_key = user_api_key.strip() | |
if not api_key: | |
return "❌ API Key 不能為空" | |
if not api_key.startswith('sk-'): | |
return "❌ API Key 格式錯誤,應該以 'sk-' 開頭" | |
client = OpenAI(api_key=api_key) | |
# 測試 API Key 是否有效 | |
test_response = client.chat.completions.create( | |
model="gpt-3.5-turbo", # 使用較便宜的模型測試 | |
messages=[{"role": "user", "content": "測試"}], | |
max_tokens=5 | |
) | |
return "✅ API Key 已設定並驗證成功!" | |
except Exception as e: | |
if "incorrect_api_key" in str(e).lower(): | |
return "❌ API Key 無效,請檢查是否正確" | |
elif "quota" in str(e).lower(): | |
return "⚠️ API Key 有效,但配額不足" | |
else: | |
return f"❌ API Key 設定失敗: {str(e)}" | |
def set_model(model_name): | |
"""設定選擇的模型""" | |
global selected_model | |
selected_model = model_name | |
return f"✅ 模型已選擇:{model_name}" | |
def extract_pdf_text(file_path): | |
"""從 PDF 文件中提取文字""" | |
try: | |
doc = fitz.open(file_path) | |
text = "" | |
for page_num, page in enumerate(doc): | |
page_text = page.get_text() | |
if page_text.strip(): | |
text += f"\n--- 第 {page_num + 1} 頁 ---\n{page_text}" | |
doc.close() | |
return text | |
except Exception as e: | |
return f"❌ PDF 解析錯誤: {str(e)}" | |
def generate_summary(pdf_file): | |
"""從 PDF 內容生成摘要""" | |
global summary_text, pdf_text | |
if not client: | |
return "❌ 請先設定 OpenAI API Key" | |
if not pdf_file: | |
return "❌ 請先上傳 PDF 文件" | |
try: | |
# 從 PDF 提取文字 | |
pdf_text = extract_pdf_text(pdf_file.name) | |
if not pdf_text.strip(): | |
return "⚠️ 無法解析 PDF 文字,可能為純圖片 PDF 或空白文件。" | |
# 截斷過長的文字 | |
max_chars = 8000 | |
if len(pdf_text) > max_chars: | |
pdf_text_truncated = pdf_text[:max_chars] + "\n\n[文本已截斷,僅顯示前 8000 字符]" | |
else: | |
pdf_text_truncated = pdf_text | |
# 生成摘要 | |
response = client.chat.completions.create( | |
model=selected_model, | |
messages=[ | |
{ | |
"role": "system", | |
"content": """你是一個專業的文檔摘要助手。請將以下 PDF 內容整理為結構化的摘要: | |
1. 首先提供一個簡短的總體概述 | |
2. 然後按照重要性列出主要重點(使用項目符號) | |
3. 如果有數據或統計信息,請特別標注 | |
4. 如果有結論或建議,請單獨列出 | |
請用繁體中文回答,保持專業且易於理解的語調。""" | |
}, | |
{"role": "user", "content": pdf_text_truncated} | |
], | |
temperature=0.3 | |
) | |
summary_text = response.choices[0].message.content | |
return summary_text | |
except Exception as e: | |
print(f"錯誤詳情: {traceback.format_exc()}") | |
return f"❌ 摘要生成失敗: {str(e)}" | |
def ask_question(user_question): | |
"""基於 PDF 內容回答問題""" | |
if not client: | |
return "❌ 請先設定 OpenAI API Key" | |
if not summary_text and not pdf_text: | |
return "❌ 請先生成 PDF 摘要" | |
if not user_question.strip(): | |
return "❌ 請輸入問題" | |
try: | |
# 組合上下文 | |
context = f"PDF 摘要:\n{summary_text}\n\n原始內容(部分):\n{pdf_text[:2000]}" | |
response = client.chat.completions.create( | |
model=selected_model, | |
messages=[ | |
{ | |
"role": "system", | |
"content": f"""你是一個專業的文檔問答助手。請基於提供的 PDF 內容回答用戶問題。 | |
規則: | |
1. 只根據提供的文檔內容回答 | |
2. 如果文檔中沒有相關信息,請明確說明 | |
3. 引用具體的文檔內容來支持你的回答 | |
4. 用繁體中文回答 | |
5. 保持客觀和準確 | |
文檔內容: | |
{context}""" | |
}, | |
{"role": "user", "content": user_question} | |
], | |
temperature=0.2 | |
) | |
return response.choices[0].message.content | |
except Exception as e: | |
print(f"錯誤詳情: {traceback.format_exc()}") | |
return f"❌ 問答生成失敗: {str(e)}" | |
def clear_all(): | |
"""清除所有資料""" | |
global summary_text, pdf_text | |
summary_text = "" | |
pdf_text = "" | |
return "", "", "" | |
# 創建 Gradio 介面 | |
with gr.Blocks( | |
title="PDF 摘要助手", | |
css=""" | |
/* 隱藏 Gradio footer 和 logo */ | |
footer { display: none !important; } | |
.gradio-container footer { display: none !important; } | |
div[class*="footer"] { display: none !important; } | |
div[class*="Footer"] { display: none !important; } | |
.gr-footer { display: none !important; } | |
""" | |
) as demo: | |
gr.Markdown(""" | |
# 📄 PDF 摘要 & 問答助手 | |
🚀 **歡迎使用 PDF 智能分析工具!** | |
**主要功能:** | |
- 📋 自動生成 PDF 文檔摘要 | |
- 🤖 基於文檔內容回答問題 | |
- 💡 快速理解長篇文檔的核心內容 | |
**使用步驟:** | |
1. 先在「設定」頁面輸入您的 OpenAI API Key | |
2. 選擇適合的 AI 模型 | |
3. 在「摘要」頁面上傳 PDF 文件並生成摘要 | |
4. 在「問答」頁面提出關於文件的問題 | |
--- | |
""") | |
with gr.Tab("🔧 設定"): | |
gr.Markdown("### API Key 設定") | |
api_key_input = gr.Textbox( | |
label="🔑 輸入 OpenAI API Key", | |
type="password", | |
placeholder="請輸入您的 OpenAI API Key (sk-...)" | |
) | |
api_key_btn = gr.Button("確認 API Key", variant="primary") | |
api_key_status = gr.Textbox( | |
label="📊 API 狀態", | |
interactive=False, | |
value="🔄 等待設定 API Key..." | |
) | |
gr.Markdown("### 模型選擇") | |
model_choice = gr.Radio( | |
["gpt-4", "gpt-4.1", "gpt-4.5"], | |
label="🤖 選擇 AI 模型", | |
value="gpt-4" | |
) | |
model_status = gr.Textbox( | |
label="🎯 模型狀態", | |
interactive=False, | |
value="✅ 已選擇:gpt-4" | |
) | |
with gr.Tab("📄 PDF 摘要"): | |
gr.Markdown("### 文件上傳與摘要生成") | |
pdf_upload = gr.File( | |
label="📁 上傳 PDF 文件", | |
file_types=[".pdf"] | |
) | |
with gr.Row(): | |
summary_btn = gr.Button("🔄 生成摘要", variant="primary") | |
clear_btn = gr.Button("🗑️ 清除資料", variant="secondary") | |
summary_output = gr.Textbox( | |
label="📋 PDF 摘要", | |
lines=15, | |
placeholder="上傳 PDF 文件並點擊「生成摘要」按鈕,AI 將為您分析文檔內容..." | |
) | |
with gr.Tab("❓ 智能問答"): | |
gr.Markdown("### 基於文檔內容的問答") | |
question_input = gr.Textbox( | |
label="💭 請輸入您的問題", | |
lines=3, | |
placeholder="例如:這份文件的主要結論是什麼?文中提到的關鍵數據有哪些?" | |
) | |
question_btn = gr.Button("📤 送出問題", variant="primary") | |
answer_output = gr.Textbox( | |
label="🤖 AI 回答", | |
lines=12, | |
placeholder="請先上傳並生成 PDF 摘要,然後輸入問題,AI 將基於文檔內容為您提供回答..." | |
) | |
gr.Markdown(""" | |
**💡 問題範例:** | |
- 這份文件討論的主要議題是什麼? | |
- 文中有哪些重要的統計數據? | |
- 作者的主要觀點和結論是什麼? | |
- 文件中提到的建議有哪些? | |
""") | |
# 事件綁定 - 保持原有的簡單方式 | |
api_key_btn.click(set_api_key, inputs=api_key_input, outputs=api_key_status) | |
api_key_input.submit(set_api_key, inputs=api_key_input, outputs=api_key_status) | |
model_choice.change(set_model, inputs=model_choice, outputs=model_status) | |
summary_btn.click(generate_summary, inputs=pdf_upload, outputs=summary_output) | |
question_btn.click(ask_question, inputs=question_input, outputs=answer_output) | |
question_input.submit(ask_question, inputs=question_input, outputs=answer_output) | |
clear_btn.click(clear_all, outputs=[summary_output, question_input, answer_output]) | |
if __name__ == "__main__": | |
demo.launch( | |
show_error=True, | |
share=False | |
) |