Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, File, UploadFile, Form | |
from fastapi.responses import HTMLResponse, StreamingResponse | |
from transformers import pipeline | |
from PIL import Image, ImageDraw | |
import numpy as np | |
import io | |
import uvicorn | |
import base64 | |
from reportlab.lib.pagesizes import letter | |
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as ReportLabImage | |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle | |
from reportlab.lib.enums import TA_CENTER | |
from reportlab.lib.units import inch | |
app = FastAPI() | |
# Load models | |
def load_models(): | |
return { | |
"KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"), | |
"KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"), | |
"RöntgenMeister": pipeline("image-classification", | |
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388") | |
} | |
models = load_models() | |
def translate_label(label): | |
# Keep translations for internal use if needed, but for the PDF we'll use English | |
translations = { | |
"fracture": "Fracture", | |
"no fracture": "No Fracture", | |
"normal": "Normal", | |
"abnormal": "Abnormal", | |
"F1": "Fracture", # Assuming F1 also means fracture | |
"NF": "No Fracture" # Assuming NF means no fracture | |
} | |
return translations.get(label.lower(), label) | |
def create_heatmap_overlay(image, box, score): | |
overlay = Image.new('RGBA', image.size, (0, 0, 0, 0)) | |
draw = ImageDraw.Draw(overlay) | |
x1, y1 = box['xmin'], box['ymin'] | |
x2, y2 = box['xmax'], box['ymax'] | |
if score > 0.8: | |
fill_color = (255, 0, 0, 100) | |
border_color = (255, 0, 0, 255) | |
elif score > 0.6: | |
fill_color = (255, 165, 0, 100) | |
border_color = (255, 165, 0, 255) | |
else: | |
fill_color = (255, 255, 0, 100) | |
border_color = (255, 255, 0, 255) | |
draw.rectangle([x1, y1, x2, y2], fill=fill_color) | |
draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2) | |
return overlay | |
def draw_boxes(image, predictions): | |
result_image = image.copy().convert('RGBA') | |
for pred in predictions: | |
box = pred['box'] | |
score = pred['score'] | |
overlay = create_heatmap_overlay(image, box, score) | |
result_image = Image.alpha_composite(result_image, overlay) | |
draw = ImageDraw.Draw(result_image) | |
temp = 36.5 + (score * 2.5) | |
# Label in English | |
label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)" | |
try: | |
text_bbox = draw.textbbox((box['xmin'], box['ymin'] - 20), label) | |
except AttributeError: | |
font_size = 10 | |
text_width = len(label) * font_size * 0.6 | |
text_height = font_size * 1.2 | |
text_bbox = (box['xmin'], box['ymin'] - text_height, box['xmin'] + text_width, box['ymin']) | |
draw.rectangle(text_bbox, fill=(0, 0, 0, 180)) | |
draw.text( | |
(box['xmin'], box['ymin']-20), | |
label, | |
fill=(255, 255, 255, 255) | |
) | |
return result_image | |
def image_to_base64(image): | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode() | |
return f"data:image/png;base64,{img_str}" | |
COMMON_STYLES = """ | |
body { | |
font-family: system-ui, -apple-system, sans-serif; | |
background: #f0f2f5; | |
margin: 0; | |
padding: 20px; | |
color: #1a1a1a; | |
} | |
::-webkit-scrollbar { | |
width: 8px; | |
height: 8px; | |
} | |
::-webkit-scrollbar-track { | |
background: transparent; | |
} | |
::-webkit-scrollbar-thumb { | |
background-color: rgba(156, 163, 175, 0.5); | |
border-radius: 4px; | |
} | |
.container { | |
max-width: 1200px; | |
margin: 0 auto; | |
background: white; | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
} | |
.button { | |
background: #2d2d2d; | |
color: white; | |
border: none; | |
padding: 12px 30px; | |
border-radius: 8px; | |
cursor: pointer; | |
font-size: 1.1em; | |
transition: all 0.3s ease; | |
position: relative; | |
} | |
.button:hover { | |
background: #404040; | |
} | |
@keyframes progress { | |
0% { width: 0; } | |
100% { width: 100%; } | |
} | |
.button-progress { | |
position: absolute; | |
bottom: 0; | |
left: 0; | |
height: 4px; | |
background: rgba(255, 255, 255, 0.5); | |
width: 0; | |
} | |
.button:active .button-progress { | |
animation: progress 2s linear forwards; | |
} | |
img { | |
max-width: 100%; | |
height: auto; | |
border-radius: 8px; | |
} | |
@keyframes blink { | |
0% { opacity: 1; } | |
50% { opacity: 0; } | |
100% { opacity: 1; } | |
} | |
#loading { | |
display: none; | |
color: white; | |
margin-top: 10px; | |
animation: blink 1s infinite; | |
text-align: center; | |
} | |
""" | |
async def main(): | |
content = f""" | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<title>Fracture Detection</title> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
<style> | |
{COMMON_STYLES} | |
.upload-section {{ | |
background: #2d2d2d; | |
padding: 40px; | |
border-radius: 12px; | |
margin: 20px 0; | |
text-align: center; | |
border: 2px dashed #404040; | |
transition: all 0.3s ease; | |
color: white; | |
}} | |
.upload-section:hover {{ | |
border-color: #555; | |
}} | |
input[type="file"] {{ | |
font-size: 1.1em; | |
margin: 20px 0; | |
color: white; | |
}} | |
input[type="file"]::file-selector-button {{ | |
font-size: 1em; | |
padding: 10px 20px; | |
border-radius: 8px; | |
border: 1px solid #404040; | |
background: #2d2d2d; | |
color: white; | |
transition: all 0.3s ease; | |
cursor: pointer; | |
}} | |
input[type="file"]::file-selector-button:hover {{ | |
background: #404040; | |
}} | |
.confidence-slider {{ | |
width: 100%; | |
max-width: 300px; | |
margin: 20px auto; | |
}} | |
input[type="range"] {{ | |
width: 100%; | |
height: 8px; | |
border-radius: 4px; | |
background: #404040; | |
outline: none; | |
transition: all 0.3s ease; | |
-webkit-appearance: none; | |
}} | |
input[type="range"]::-webkit-slider-thumb {{ | |
-webkit-appearance: none; | |
width: 20px; | |
height: 20px; | |
border-radius: 50%; | |
background: white; | |
cursor: pointer; | |
border: none; | |
}} | |
.input-field {{ | |
margin-bottom: 20px; | |
}} | |
.input-field label {{ | |
display: block; | |
margin-bottom: 5px; | |
font-size: 1.1em; | |
}} | |
.input-field input[type="text"] {{ | |
width: calc(100% - 20px); | |
padding: 10px; | |
border-radius: 5px; | |
border: 1px solid #ccc; | |
background: #fff; | |
color: #1a1a1a; | |
font-size: 1em; | |
}} | |
</style> | |
</head> | |
<body> | |
<div class="container"> | |
<div class="upload-section"> | |
<form action="/analyze" method="post" enctype="multipart/form-data" onsubmit="document.getElementById('loading').style.display = 'block';"> | |
<div class="input-field"> | |
<label for="patient_name">Patient Name:</label> | |
<input type="text" id="patient_name" name="patient_name" required> | |
</div> | |
<div> | |
<input type="file" name="file" accept="image/*" required> | |
</div> | |
<div class="confidence-slider"> | |
<label for="threshold">Confidence Threshold: <span id="thresholdValue">0.60</span></label> | |
<input type="range" id="threshold" name="threshold" | |
min="0" max="1" step="0.05" value="0.60" | |
oninput="document.getElementById('thresholdValue').textContent = parseFloat(this.value).toFixed(2)"> | |
</div> | |
<button type="submit" class="button"> | |
Analyze & Generate PDF | |
<div class="button-progress"></div> | |
</button> | |
<div id="loading">Loading...</div> | |
</form> | |
</div> | |
</div> | |
</body> | |
</html> | |
""" | |
return content | |
async def analyze_file(patient_name: str = Form(...), file: UploadFile = File(...), threshold: float = Form(0.6)): | |
try: | |
contents = await file.read() | |
image = Image.open(io.BytesIO(contents)).convert("RGB") # Ensure RGB for PDF | |
predictions_watcher = models["KnochenWächter"](image) | |
predictions_master = models["RöntgenMeister"](image) | |
predictions_locator = models["KnochenAuge"](image) | |
filtered_preds = [p for p in predictions_locator if p['score'] >= threshold] | |
if filtered_preds: | |
result_image = draw_boxes(image, filtered_preds) | |
else: | |
result_image = image | |
# Generate PDF | |
buffer = io.BytesIO() | |
doc = SimpleDocTemplate(buffer, pagesize=letter) | |
styles = getSampleStyleSheet() | |
centered_style = ParagraphStyle( | |
name='Centered', | |
parent=styles['Normal'], | |
alignment=TA_CENTER, | |
fontSize=12, | |
leading=14 | |
) | |
heading_style = ParagraphStyle( | |
name='Heading', | |
parent=styles['h1'], | |
alignment=TA_CENTER, | |
fontSize=24, | |
spaceAfter=20 | |
) | |
subheading_style = ParagraphStyle( | |
name='SubHeading', | |
parent=styles['h2'], | |
alignment=TA_CENTER, | |
fontSize=16, | |
spaceAfter=10 | |
) | |
report_text_style = ParagraphStyle( | |
name='ReportText', | |
parent=styles['Normal'], | |
alignment=TA_CENTER, | |
fontSize=12, | |
spaceAfter=5 | |
) | |
story = [] | |
story.append(Paragraph("<b>Fracture Detection Report</b>", heading_style)) | |
story.append(Spacer(1, 0.2 * inch)) | |
story.append(Paragraph(f"<b>Patient Name:</b> {patient_name}", subheading_style)) | |
story.append(Spacer(1, 0.4 * inch)) | |
# KnochenWächter results | |
story.append(Paragraph("<b>KnochenWächter Results:</b>", subheading_style)) | |
for pred in predictions_watcher: | |
story.append(Paragraph( | |
f"{translate_label(pred['label'])}: {pred['score']:.1%}", | |
report_text_style | |
)) | |
story.append(Spacer(1, 0.2 * inch)) | |
# RöntgenMeister results | |
story.append(Paragraph("<b>RöntgenMeister Results:</b>", subheading_style)) | |
for pred in predictions_master: | |
story.append(Paragraph( | |
f"{translate_label(pred['label'])}: {pred['score']:.1%}", | |
report_text_style | |
)) | |
story.append(Spacer(1, 0.4 * inch)) | |
# Analyzed Image | |
story.append(Paragraph("<b>X-ray Image Analysis:</b>", subheading_style)) | |
img_buffer = io.BytesIO() | |
result_image.save(img_buffer, format="PNG") | |
img_buffer.seek(0) | |
img_rl = ReportLabImage(img_buffer) | |
img_width, img_height = img_rl.drawWidth, img_rl.drawHeight | |
aspect_ratio = img_height / img_width | |
max_width = 5 * inch | |
if img_width > max_width: | |
img_rl.drawWidth = max_width | |
img_rl.drawHeight = max_width * aspect_ratio | |
img_rl.hAlign = 'CENTER' | |
story.append(img_rl) | |
story.append(Spacer(1, 0.4 * inch)) | |
# Final report text based on object detection | |
if filtered_preds: | |
story.append(Paragraph( | |
"<b>The X-ray image analysis shows potential fracture localization.</b>", | |
report_text_style | |
)) | |
for pred in filtered_preds: | |
score = pred['score'] | |
temp = 36.5 + (score * 2.5) | |
story.append(Paragraph( | |
f"Detection: {translate_label(pred['label'])} with {score:.1%} confidence ({temp:.1f}°C)", | |
report_text_style | |
)) | |
else: | |
story.append(Paragraph( | |
"<b>Based on object localization analysis, no fracture was detected with sufficient confidence.</b>", | |
report_text_style | |
)) | |
story.append(Spacer(1, 0.2 * inch)) | |
story.append(Paragraph("This is an automatically generated report and should be reviewed by a medical professional.", centered_style)) | |
doc.build(story) | |
buffer.seek(0) | |
return StreamingResponse(buffer, media_type="application/pdf", | |
headers={"Content-Disposition": f"attachment; filename=Fracture_Report_{patient_name.replace(' ', '_')}.pdf"}) | |
except Exception as e: | |
return HTMLResponse(f""" | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<title>Error</title> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
<style> | |
{COMMON_STYLES} | |
.error-box {{ | |
background: #fee2e2; | |
border: 1px solid #ef4444; | |
padding: 20px; | |
border-radius: 8px; | |
margin: 20px 0; | |
}} | |
</style> | |
</head> | |
<body> | |
<div class="container"> | |
<div class="error-box"> | |
<h3>Error</h3> | |
<p>{str(e)}</p> | |
</div> | |
<a href="/" class="button back-button"> | |
← Back | |
<div class="button-progress"></div> | |
</a> | |
</div> | |
</body> | |
</html> | |
""") | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |