import gradio as gr from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import torch # Load model and processor from the Hugging Face Hub model_name = "prithivMLmods/Bone-Fracture-Detection" model = AutoModelForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def detect_fracture(image): """ Takes a NumPy image array, processes it, and returns the model's prediction. """ # Convert NumPy array to a PIL Image image = Image.fromarray(image).convert("RGB") # Process the image and prepare it as input for the model inputs = processor(images=image, return_tensors="pt") # Perform inference without calculating gradients with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # Apply softmax to get probabilities and convert to a list probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() # Create a dictionary of labels and their corresponding probabilities # This now correctly uses the labels from the model's configuration prediction = {model.config.id2label[i]: round(probs[i], 3) for i in range(len(probs))} return prediction # Create the Gradio Interface iface = gr.Interface( fn=detect_fracture, inputs=gr.Image(type="numpy", label="Upload Bone X-ray"), outputs=gr.Label(num_top_classes=2, label="Detection Result"), title="🔬 Bone Fracture Detection", description="Upload a bone X-ray image to detect if there is a fracture. The model will return the probability for 'Fractured' and 'Not Fractured'.", examples=[ ["fractured_example.png"], ["not_fractured_example.png"] ] # Note: You would need to have these image files in the same directory for the examples to work. ) # Launch the app if __name__ == "__main__": iface.launch()