FinanceModel / app.py
4lli39421's picture
Update app.py
d7b97aa verified
raw
history blame
4.63 kB
import streamlit as st
import torch
import requests
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
@st.cache_resource
def load_fingpt_lora():
base_model_id = "meta-llama/Llama-2-7b-hf"
lora_adapter_id = "FinGPT/fingpt-mt_llama2-7b_lora"
tokenizer = AutoTokenizer.from_pretrained(base_model_id, use_auth_token=HF_TOKEN)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
use_auth_token=HF_TOKEN
)
model = PeftModel.from_pretrained(base_model, lora_adapter_id, use_auth_token=HF_TOKEN)
return model, tokenizer
# Load token from Hugging Face Space secrets
HF_TOKEN = os.getenv("Allie", None)
if HF_TOKEN:
login(HF_TOKEN)
# === Available Models for Selection ===
model_map = {
"FinGPT LoRA" : {"id": "FinGPT/fingpt-mt_llama2-7b_lora", "local": True, "custom_loader": load_fingpt_lora},
"InvestLM (AWQ)": {"id": "yixuantt/InvestLM-mistral-AWQ", "local": False},
"FinLLaMA (LLaMA3.1-8B)": {"id": "us4/fin-llama3.1-8b", "local": False},
"FinanceConnect (13B)": {"id": "ceadar-ie/FinanceConnect-13B", "local": True},
"Sujet-Finance (8B)": {"id": "sujet-ai/Sujet-Finance-8B-v0.1", "local": True}
}
# === Load local models with caching ===
@st.cache_resource
def load_local_model(model_id):
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
use_auth_token=HF_TOKEN
)
return model, tokenizer
# === Build system prompt for discursive answers ===
def build_prompt(user_question):
return (
"You are FinGPT, a helpful and knowledgeable financial assistant. "
"You explain finance, controlling, and tax topics clearly, with examples when useful.\n\n"
f"User: {user_question.strip()}\n"
"FinGPT:"
)
# === Clean repeated/extra outputs ===
def clean_output(output_text):
parts = output_text.split("FinGPT:")
return parts[-1].strip() if len(parts) > 1 else output_text.strip()
# === Generate with local model ===
def query_local_model(model_id, prompt):
model, tokenizer = load_local_model(model_id)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=300,
temperature=0.7,
top_k=50,
top_p=0.95,
repetition_penalty=1.2,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
raw_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
return clean_output(raw_output)
# === Generate with remote HF API ===
def query_remote_model(model_id, prompt):
headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {}
payload = {"inputs": prompt, "parameters": {"max_new_tokens": 300}}
response = requests.post(
f"https://api-inference.huggingface.co/models/{model_id}",
headers=headers,
json=payload
)
if response.status_code == 200:
result = response.json()
return result[0]["generated_text"] if isinstance(result, list) else result.get("generated_text", "No output")
else:
raise RuntimeError(f"API Error {response.status_code}: {response.text}")
# === Unified model query handler ===
def query_model(model_entry, user_question):
prompt = build_prompt(user_question)
if model_entry["local"]:
return query_local_model(model_entry["id"], prompt)
else:
return clean_output(query_remote_model(model_entry["id"], prompt))
# === Streamlit UI Layout ===
st.set_page_config(page_title="Finance LLM Comparison", layout="centered")
st.title("💼 Financial LLM Evaluation Interface")
model_choice = st.selectbox("Select a Financial Model", list(model_map.keys()))
user_question = st.text_area("Enter your financial question:", "What is EBIT vs EBITDA?", height=150)
if st.button("Get Response"):
with st.spinner("Thinking like a CFO..."):
try:
model_entry = model_map[model_choice]
answer = query_model(model_entry, user_question)
st.text_area("💬 Response:", value=answer, height=300, disabled=True)
except Exception as e:
st.error(f"❌ Error: {e}")