Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,39 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
3 |
import torch
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
@st.cache_resource
|
6 |
def load_model_and_tokenizer(model_id):
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
9 |
return model, tokenizer
|
10 |
|
|
|
11 |
def query_model(model_id, question):
|
12 |
model, tokenizer = load_model_and_tokenizer(model_id)
|
13 |
-
inputs = tokenizer
|
14 |
-
outputs = model.generate(inputs, max_new_tokens=
|
15 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
16 |
|
17 |
-
|
18 |
-
"FinGPT": "second-state/FinGPT-MT-Llama-3-8B-LoRA-GGUF",
|
19 |
-
"InvestLM": "yixuantt/InvestLM-mistral-AWQ",
|
20 |
-
"FinLlama": "roma2025/FinLlama-3-8B"
|
21 |
-
}
|
22 |
-
|
23 |
st.title("💼 Financial LLM Evaluation Interface")
|
24 |
|
25 |
model_choice = st.selectbox("Select a Financial Model", list(model_map.keys()))
|
26 |
-
user_question = st.text_area("Enter your financial question:", "What is
|
27 |
|
28 |
if st.button("Get Response"):
|
29 |
with st.spinner("Generating response..."):
|
@@ -33,4 +43,3 @@ if st.button("Get Response"):
|
|
33 |
st.write(answer)
|
34 |
except Exception as e:
|
35 |
st.error(f"Something went wrong: {e}")
|
36 |
-
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from huggingface_hub import login
|
4 |
import torch
|
5 |
+
import os
|
6 |
|
7 |
+
|
8 |
+
# Set model map
|
9 |
+
model_map = {
|
10 |
+
"FinGPT": "AI4Finance/FinGPT",
|
11 |
+
"FinanceConnect": "ceadar-ie/FinanceConnect-13B",
|
12 |
+
"Sujet-Finance": "sujet-ai/Sujet-Finance-8B-v0.1"
|
13 |
+
}
|
14 |
+
|
15 |
+
# Cache model loading for performance
|
16 |
@st.cache_resource
|
17 |
def load_model_and_tokenizer(model_id):
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
model_id,
|
21 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
22 |
+
)
|
23 |
return model, tokenizer
|
24 |
|
25 |
+
# Query model
|
26 |
def query_model(model_id, question):
|
27 |
model, tokenizer = load_model_and_tokenizer(model_id)
|
28 |
+
inputs = tokenizer(question, return_tensors="pt")
|
29 |
+
outputs = model.generate(**inputs, max_new_tokens=150)
|
30 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
31 |
|
32 |
+
# Streamlit app layout
|
|
|
|
|
|
|
|
|
|
|
33 |
st.title("💼 Financial LLM Evaluation Interface")
|
34 |
|
35 |
model_choice = st.selectbox("Select a Financial Model", list(model_map.keys()))
|
36 |
+
user_question = st.text_area("Enter your financial question:", "What is EBITDA?")
|
37 |
|
38 |
if st.button("Get Response"):
|
39 |
with st.spinner("Generating response..."):
|
|
|
43 |
st.write(answer)
|
44 |
except Exception as e:
|
45 |
st.error(f"Something went wrong: {e}")
|
|