import streamlit as st import torch import requests import os from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import login # Load Hugging Face token from secrets HF_TOKEN = os.getenv("Allie", None) if HF_TOKEN: login(HF_TOKEN) # All available models model_map = { "FinGPT": {"id": "OpenFinAL/GPT2_FINGPT_QA", "local": True}, "InvestLM": {"id": "yixuantt/InvestLM-mistral-AWQ", "local": False}, "FinLLaMA": {"id": "us4/fin-llama3.1-8b", "local": False}, "FinanceConnect": {"id": "ceadar-ie/FinanceConnect-13B", "local": True}, "Sujet-Finance": {"id": "sujet-ai/Sujet-Finance-8B-v0.1", "local": True} } # Load local model @st.cache_resource def load_local_model(model_id): tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=HF_TOKEN) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float32, device_map="auto" if torch.cuda.is_available() else None, use_auth_token=HF_TOKEN ) return model, tokenizer # Build discursive prompt def build_prompt(user_question): return ( "You are a helpful and knowledgeable financial assistant named FinGPT. " "You explain financial terms and concepts clearly, with examples when useful.\n\n" f"User: {user_question.strip()}\n" "FinGPT:" ) # Clean up repeated parts def clean_output(output_text): parts = output_text.split("FinGPT:") return parts[-1].strip() if len(parts) > 1 else output_text.strip() # Local inference def query_local_model(model_id, prompt): model, tokenizer = load_local_model(model_id) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=200, temperature=0.7, top_k=50, top_p=0.95, repetition_penalty=1.2, do_sample=True, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id ) raw_output = tokenizer.decode(outputs[0], skip_special_tokens=True) return clean_output(raw_output) # Remote inference def query_remote_model(model_id, prompt): headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {} payload = {"inputs": prompt, "parameters": {"max_new_tokens": 200}} response = requests.post( f"https://api-inference.huggingface.co/models/{model_id}", headers=headers, json=payload ) if response.status_code == 200: result = response.json() return result[0]["generated_text"] if isinstance(result, list) else result.get("generated_text", "No output") else: raise RuntimeError(f"API Error: {response.status_code} — {response.text}") # Unified query handler def query_model(model_entry, user_question): prompt = build_prompt(user_question) if model_entry["local"]: return query_local_model(model_entry["id"], prompt) else: return query_remote_model(model_entry["id"], prompt) # Streamlit UI st.set_page_config(page_title="Financial LLM Interface", layout="centered") st.title("💼 Financial LLM Evaluation Interface") model_choice = st.selectbox("Select a Financial Model", list(model_map.keys())) user_question = st.text_area("Enter your financial question:", "What is CAP in finance?") if st.button("Get Response"): with st.spinner("Generating discursive response..."): try: model_entry = model_map[model_choice] answer = query_model(model_entry, user_question) st.markdown("### 🧠 Response:") st.text_area("💬 Response from FinGPT:", value=answer, height=200, disabled=True) except Exception as e: st.error(f"❌ Error: {e}")