Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
os.system(
|
| 7 |
+
'wget https://github.com/FanChiMao/CMFNet/releases/download/v0.0/deblur_GoPro_CMFNet.pth -P experiments/pretrained_models')
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def inference(img):
|
| 11 |
+
os.system('mkdir test')
|
| 12 |
+
basewidth = 512
|
| 13 |
+
wpercent = (basewidth / float(img.size[0]))
|
| 14 |
+
hsize = int((float(img.size[1]) * float(wpercent)))
|
| 15 |
+
img = img.resize((basewidth, hsize), Image.BILINEAR)
|
| 16 |
+
img.save("test/1.png", "PNG")
|
| 17 |
+
os.system(
|
| 18 |
+
'python main_test_CMFNet.py --input_dir test --weights experiments/pretrained_models/deblur_GoPro_CMFNet.pth')
|
| 19 |
+
return 'results/1.png'
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
title = "Compound Multi-branch Feature Fusion (Deblur)"
|
| 23 |
+
description = "Gradio demo for CMFNet. CMFNet achieves state-of-the-art performance on six tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. See the paper and project page for detailed results below. Here, we provide a demo for real-world image SR.To use it, simply upload your image, or click one of the examples to load them."
|
| 24 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.10257' target='_blank'>SwinIR: Image Restoration Using Swin Transformer</a> | <a href='https://github.com/JingyunLiang/SwinIR' target='_blank'>Github Repo</a></p>"
|
| 25 |
+
|
| 26 |
+
examples = [['Haze.png']]
|
| 27 |
+
gr.Interface(
|
| 28 |
+
inference,
|
| 29 |
+
[gr.inputs.Image(type="pil", label="Input")],
|
| 30 |
+
gr.outputs.Image(type="file", label="Output"),
|
| 31 |
+
title=title,
|
| 32 |
+
description=description,
|
| 33 |
+
article=article,
|
| 34 |
+
examples=examples
|
| 35 |
+
).launch(debug=True)
|