Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 2,821 Bytes
			
			| 99302dc | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | import argparse
import cv2
import glob
import numpy as np
from collections import OrderedDict
from skimage import img_as_ubyte
import os
import torch
import requests
from PIL import Image
import torchvision.transforms.functional as TF
import torch.nn.functional as F
from natsort import natsorted
from model.CMFNet import CMFNet
def main():
    parser = argparse.ArgumentParser(description='Demo Image Deraindrop')
    parser.add_argument('--input_dir', default='test/', type=str, help='Input images')
    parser.add_argument('--result_dir', default='result/', type=str, help='Directory for results')
    parser.add_argument('--weights',
                        default='experiments/pretrained_models/deraindrop_model.pth', type=str,
                        help='Path to weights')
    args = parser.parse_args()
    inp_dir = args.input_dir
    out_dir = args.result_dir
    os.makedirs(out_dir, exist_ok=True)
    files = natsorted(glob.glob(os.path.join(inp_dir, '*')))
    if len(files) == 0:
        raise Exception(f"No files found at {inp_dir}")
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # Load corresponding models architecture and weights
    model = CMFNet()
    model = model.to(device)
    model.eval()
    load_checkpoint(model, args.weights)
    
    mul = 16
    for file_ in files:
        img = Image.open(file_).convert('RGB')
        input_ = TF.to_tensor(img).unsqueeze(0).to(device)
        # Pad the input if not_multiple_of 8
        h, w = input_.shape[2], input_.shape[3]
        H, W = ((h + mul) // mul) * mul, ((w + mul) // mul) * mul
        padh = H - h if h % mul != 0 else 0
        padw = W - w if w % mul != 0 else 0
        input_ = F.pad(input_, (0, padw, 0, padh), 'reflect')
        with torch.no_grad():
            restored = model(input_)
        restored = torch.clamp(restored, 0, 1)
        restored = restored[:, :, :h, :w]
        restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
        restored = img_as_ubyte(restored[0])
        f = os.path.splitext(os.path.split(file_)[-1])[0]
        save_img((os.path.join(out_dir, f + '.png')), restored)
def save_img(filepath, img):
    cv2.imwrite(filepath, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
def load_checkpoint(model, weights):
    checkpoint = torch.load(weights, map_location=torch.device('cpu'))
    try:
        model.load_state_dict(checkpoint["state_dict"])
    except:
        state_dict = checkpoint["state_dict"]
        new_state_dict = OrderedDict()
        for k, v in state_dict.items():
            name = k[7:]  # remove `module.`
            new_state_dict[name] = v
        model.load_state_dict(new_state_dict)
def setup(args):
    save_dir = 'result/'
    folder = 'test/'
    return folder, save_dir
if __name__ == '__main__':
    main() | 
