Spaces:
Runtime error
Runtime error
Create main_test_SRMNet.py
Browse files- main_test_SRMNet.py +94 -0
main_test_SRMNet.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torchvision.transforms.functional as TF
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import os
|
| 6 |
+
from skimage import img_as_ubyte
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from natsort import natsorted
|
| 9 |
+
from glob import glob
|
| 10 |
+
from utils.image_utils import save_img
|
| 11 |
+
from utils.model_utils import load_checkpoint
|
| 12 |
+
import argparse
|
| 13 |
+
from model_arch.SRMNet_SWFF import SRMNet_SWFF
|
| 14 |
+
from model_arch.SRMNet import SRMNet
|
| 15 |
+
|
| 16 |
+
tasks = ['Deblurring_motionblur',
|
| 17 |
+
'Dehaze_realworld',
|
| 18 |
+
'Denoise_gaussian',
|
| 19 |
+
'Denoise_realworld',
|
| 20 |
+
'Deraining_raindrop',
|
| 21 |
+
'Deraining_rainstreak',
|
| 22 |
+
'LLEnhancement',
|
| 23 |
+
'Retouching']
|
| 24 |
+
|
| 25 |
+
def main():
|
| 26 |
+
parser = argparse.ArgumentParser(description='Quick demo Image Restoration')
|
| 27 |
+
parser.add_argument('--input_dir', default='test/', type=str, help='Input images root')
|
| 28 |
+
parser.add_argument('--result_dir', default='result/', type=str, help='Results images root')
|
| 29 |
+
parser.add_argument('--weights_root', default='pretrained_model', type=str, help='Weights root')
|
| 30 |
+
parser.add_argument('--task', default='Retouching', type=str, help='Restoration task (Above task list)')
|
| 31 |
+
|
| 32 |
+
args = parser.parse_args()
|
| 33 |
+
|
| 34 |
+
# Prepare testing data
|
| 35 |
+
inp_dir = os.path.join(args.input_dir, args.task)
|
| 36 |
+
files = natsorted(glob.glob(os.path.join(inp_dir, '*')))
|
| 37 |
+
if len(files) == 0:
|
| 38 |
+
raise Exception("\nNo images in {} \nPlease enter the following tasks: \n\n{}".format(inp_dir, '\n'.join(tasks)))
|
| 39 |
+
|
| 40 |
+
out_dir = os.path.join(args.result_dir, args.task)
|
| 41 |
+
os.makedirs(out_dir, exist_ok=True)
|
| 42 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 43 |
+
# Build model
|
| 44 |
+
model = define_model(args)
|
| 45 |
+
model.eval()
|
| 46 |
+
model = model.to(device)
|
| 47 |
+
|
| 48 |
+
print('restoring images......')
|
| 49 |
+
|
| 50 |
+
mul = 16
|
| 51 |
+
|
| 52 |
+
for i, file_ in enumerate(tqdm(files)):
|
| 53 |
+
img = Image.open(file_).convert('RGB')
|
| 54 |
+
input_ = TF.to_tensor(img).unsqueeze(0).cuda()
|
| 55 |
+
|
| 56 |
+
# Pad the input if not_multiple_of 8
|
| 57 |
+
h, w = input_.shape[2], input_.shape[3]
|
| 58 |
+
H, W = ((h + mul) // mul) * mul, ((w + mul) // mul) * mul
|
| 59 |
+
padh = H - h if h % mul != 0 else 0
|
| 60 |
+
padw = W - w if w % mul != 0 else 0
|
| 61 |
+
input_ = F.pad(input_, (0, padw, 0, padh), 'reflect')
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
restored = model(input_)
|
| 64 |
+
|
| 65 |
+
restored = torch.clamp(restored, 0, 1)
|
| 66 |
+
restored = restored[:, :, :h, :w]
|
| 67 |
+
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
|
| 68 |
+
restored = img_as_ubyte(restored[0])
|
| 69 |
+
|
| 70 |
+
f = os.path.splitext(os.path.split(file_)[-1])[0]
|
| 71 |
+
save_img((os.path.join(out_dir, f + '.png')), restored)
|
| 72 |
+
|
| 73 |
+
print(f"Files saved at {out_dir}")
|
| 74 |
+
print('finish !')
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def define_model(args):
|
| 78 |
+
# Enhance models
|
| 79 |
+
if args.task in ['LLEnhancement', 'Retouching']:
|
| 80 |
+
model = SRMNet(in_chn=3, wf=96, depth=4)
|
| 81 |
+
weight_path = os.path.join(args.weights_root, args.task + '.pth')
|
| 82 |
+
load_checkpoint(model, weight_path)
|
| 83 |
+
|
| 84 |
+
# Restored models
|
| 85 |
+
else:
|
| 86 |
+
model = SRMNet_SWFF(in_chn=3, wf=96, depth=4)
|
| 87 |
+
weight_path = os.path.join(args.weights_root, args.task + '.pth')
|
| 88 |
+
load_checkpoint(model, weight_path)
|
| 89 |
+
|
| 90 |
+
return model
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
if __name__ == '__main__':
|
| 94 |
+
main()
|