Spaces:
Sleeping
Sleeping
from transformers import BlipForQuestionAnswering, AutoProcessor | |
from PIL import Image | |
import gradio as gr | |
import openai # For OpenAI API | |
# Load the BLIP model and processor | |
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") | |
processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
# Set your OpenAI API key | |
openai.api_key = "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" # Replace with your OpenAI API key | |
# Function to generate the initial answer with BLIP and expand it with OpenAI API | |
def qna(image, question): | |
# Step 1: Get initial short answer from BLIP | |
inputs = processor(image, question, return_tensors="pt") | |
out = model.generate(**inputs) | |
short_answer = processor.decode(out[0], skip_special_tokens=True) | |
# Step 2: Construct prompt for OpenAI API | |
prompt = f"Question: {question}\nShort Answer: {short_answer}\nProvide a detailed explanation based on this answer." | |
# Step 3: Send prompt to OpenAI API for a paragraph-length answer | |
try: | |
response = openai.Completion.create( | |
engine="text-davinci-003", # Specify model | |
prompt=prompt, | |
max_tokens=200 # Adjust max_tokens as needed for response length | |
) | |
detailed_answer = response.choices[0].text.strip() | |
except Exception as e: | |
print(f"Exception occurred: {e}") | |
detailed_answer = "Failed to get response from OpenAI API." | |
return detailed_answer | |
# Create Gradio interface | |
interf = gr.Interface(fn=qna, inputs=["image", "text"], outputs="text") | |
interf.launch() | |