Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
from transformers import BlipForQuestionAnswering, AutoProcessor
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
-
import openai
|
5 |
|
6 |
# Load the BLIP model and processor
|
7 |
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
8 |
processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
9 |
|
10 |
# Set your OpenAI API key
|
11 |
-
openai.api_key = "
|
12 |
|
13 |
# Function to generate the initial answer with BLIP and expand it with OpenAI API
|
14 |
def qna(image, question):
|
@@ -28,12 +28,19 @@ def qna(image, question):
|
|
28 |
max_tokens=200 # Adjust max_tokens as needed for response length
|
29 |
)
|
30 |
detailed_answer = response.choices[0].text.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
except Exception as e:
|
32 |
-
print(f"
|
33 |
-
detailed_answer = "Failed to
|
34 |
|
35 |
return detailed_answer
|
36 |
|
37 |
# Create Gradio interface
|
38 |
interf = gr.Interface(fn=qna, inputs=["image", "text"], outputs="text")
|
39 |
interf.launch()
|
|
|
|
1 |
from transformers import BlipForQuestionAnswering, AutoProcessor
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
+
import openai
|
5 |
|
6 |
# Load the BLIP model and processor
|
7 |
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
8 |
processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
9 |
|
10 |
# Set your OpenAI API key
|
11 |
+
openai.api_key = "your_openai_api_key_here" # Replace with your OpenAI API key
|
12 |
|
13 |
# Function to generate the initial answer with BLIP and expand it with OpenAI API
|
14 |
def qna(image, question):
|
|
|
28 |
max_tokens=200 # Adjust max_tokens as needed for response length
|
29 |
)
|
30 |
detailed_answer = response.choices[0].text.strip()
|
31 |
+
|
32 |
+
except openai.error.OpenAIError as e:
|
33 |
+
# Print detailed error information
|
34 |
+
print(f"OpenAI API error: {e}")
|
35 |
+
detailed_answer = f"Failed to get response from OpenAI API: {e}"
|
36 |
+
|
37 |
except Exception as e:
|
38 |
+
print(f"General exception: {e}")
|
39 |
+
detailed_answer = "Failed to connect to OpenAI API."
|
40 |
|
41 |
return detailed_answer
|
42 |
|
43 |
# Create Gradio interface
|
44 |
interf = gr.Interface(fn=qna, inputs=["image", "text"], outputs="text")
|
45 |
interf.launch()
|
46 |
+
|