Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import BlipForQuestionAnswering, AutoProcessor
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
7 |
+
processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
8 |
+
|
9 |
+
def answer_question(image, question):
|
10 |
+
|
11 |
+
inputs = processor(image, question, return_tensors="pt")
|
12 |
+
|
13 |
+
out = model.generate(**inputs)
|
14 |
+
|
15 |
+
answer = processor.decode(out[0], skip_special_tokens=True)
|
16 |
+
return answer
|
17 |
+
|
18 |
+
|
19 |
+
iface = gr.Interface(
|
20 |
+
fn=answer_question,
|
21 |
+
inputs=[
|
22 |
+
gr.inputs.Image(type="pil", label="Upload Image"),
|
23 |
+
gr.inputs.Textbox(label="Enter Your Question")
|
24 |
+
],
|
25 |
+
outputs="text",
|
26 |
+
title="BLIP Question Answering",
|
27 |
+
description="Upload an image and ask a question to get an answer."
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
iface.launch()
|