Spaces:
Sleeping
Sleeping
| import pytorch_lightning as pl | |
| import hydra | |
| from omegaconf import DictConfig | |
| import remfx.utils as utils | |
| import torch | |
| from remfx.models import RemFXChainInference | |
| log = utils.get_logger(__name__) | |
| def main(cfg: DictConfig): | |
| # Apply seed for reproducibility | |
| if cfg.seed: | |
| pl.seed_everything(cfg.seed) | |
| log.info(f"Instantiating datamodule <{cfg.datamodule._target_}>.") | |
| datamodule = hydra.utils.instantiate(cfg.datamodule, _convert_="partial") | |
| log.info(f"Instantiating model <{cfg.model._target_}>.") | |
| models = {} | |
| for effect in cfg.ckpts: | |
| ckpt_path = cfg.ckpts[effect] | |
| model = hydra.utils.instantiate(cfg.model, _convert_="partial") | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| state_dict = torch.load(ckpt_path, map_location=device)["state_dict"] | |
| model.load_state_dict(state_dict) | |
| model.to(device) | |
| models[effect] = model | |
| callbacks = [] | |
| if "callbacks" in cfg: | |
| for _, cb_conf in cfg["callbacks"].items(): | |
| if "_target_" in cb_conf: | |
| log.info(f"Instantiating callback <{cb_conf._target_}>.") | |
| callbacks.append(hydra.utils.instantiate(cb_conf, _convert_="partial")) | |
| logger = hydra.utils.instantiate(cfg.logger, _convert_="partial") | |
| log.info(f"Instantiating trainer <{cfg.trainer._target_}>.") | |
| trainer = hydra.utils.instantiate( | |
| cfg.trainer, callbacks=callbacks, logger=logger, _convert_="partial" | |
| ) | |
| log.info("Logging hyperparameters!") | |
| utils.log_hyperparameters( | |
| config=cfg, | |
| model=model, | |
| datamodule=datamodule, | |
| trainer=trainer, | |
| callbacks=callbacks, | |
| logger=logger, | |
| ) | |
| log.info("Instantiating Inference Model") | |
| inference_model = RemFXChainInference( | |
| models, | |
| sample_rate=cfg.sample_rate, | |
| num_bins=cfg.num_bins, | |
| effect_order=cfg.inference_effects_ordering, | |
| ) | |
| trainer.test(model=inference_model, datamodule=datamodule) | |
| if __name__ == "__main__": | |
| main() | |