Spaces:
Running
Running
Commit
·
fb9ce8b
1
Parent(s):
6da1b0d
Fix custom inferencing issues
Browse files- README.md +17 -0
- cfg/exp/chain_inference.yaml +7 -0
- cfg/exp/chain_inference_custom.yaml +8 -2
- remfx/datasets.py +12 -13
- remfx/models.py +17 -13
- scripts/chain_inference.py +2 -7
README.md
CHANGED
|
@@ -47,6 +47,23 @@ see `cfg/exp/default.yaml` for an example.
|
|
| 47 |
- `reverb`
|
| 48 |
- `delay`
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
## Misc.
|
| 51 |
By default, files are rendered to `input_dir / processed / {string_of_effects} / {train|val|test}`.
|
| 52 |
|
|
|
|
| 47 |
- `reverb`
|
| 48 |
- `delay`
|
| 49 |
|
| 50 |
+
## Run inference on directory
|
| 51 |
+
Assumes directory is structured as
|
| 52 |
+
- root
|
| 53 |
+
- clean
|
| 54 |
+
- file1.wav
|
| 55 |
+
- file2.wav
|
| 56 |
+
- file3.wav
|
| 57 |
+
- effected
|
| 58 |
+
- file1.wav
|
| 59 |
+
- file2.wav
|
| 60 |
+
- file3.wav
|
| 61 |
+
|
| 62 |
+
Change root path in `shell_vars.sh` and `source shell_vars.sh`
|
| 63 |
+
|
| 64 |
+
`python scripts/chain_inference.py +exp=chain_inference_custom`
|
| 65 |
+
|
| 66 |
+
|
| 67 |
## Misc.
|
| 68 |
By default, files are rendered to `input_dir / processed / {string_of_effects} / {train|val|test}`.
|
| 69 |
|
cfg/exp/chain_inference.yaml
CHANGED
|
@@ -28,10 +28,17 @@ datamodule:
|
|
| 28 |
num_workers: 8
|
| 29 |
train_dataset: None
|
| 30 |
val_dataset: None
|
|
|
|
| 31 |
ckpts:
|
| 32 |
RandomPedalboardDistortion: "ckpts/distortion.ckpt"
|
| 33 |
RandomPedalboardCompressor: "ckpts/compressor.ckpt"
|
| 34 |
RandomPedalboardReverb: "ckpts/reverb.ckpt"
|
| 35 |
RandomPedalboardChorus: "ckpts/chorus.ckpt"
|
| 36 |
RandomPedalboardDelay: "ckpts/delay.ckpt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
num_bins: 1025
|
|
|
|
| 28 |
num_workers: 8
|
| 29 |
train_dataset: None
|
| 30 |
val_dataset: None
|
| 31 |
+
|
| 32 |
ckpts:
|
| 33 |
RandomPedalboardDistortion: "ckpts/distortion.ckpt"
|
| 34 |
RandomPedalboardCompressor: "ckpts/compressor.ckpt"
|
| 35 |
RandomPedalboardReverb: "ckpts/reverb.ckpt"
|
| 36 |
RandomPedalboardChorus: "ckpts/chorus.ckpt"
|
| 37 |
RandomPedalboardDelay: "ckpts/delay.ckpt"
|
| 38 |
+
inference_effects_ordering:
|
| 39 |
+
- "RandomPedalboardDistortion"
|
| 40 |
+
- "RandomPedalboardCompressor"
|
| 41 |
+
- "RandomPedalboardReverb"
|
| 42 |
+
- "RandomPedalboardChorus"
|
| 43 |
+
- "RandomPedalboardDelay"
|
| 44 |
num_bins: 1025
|
cfg/exp/chain_inference_custom.yaml
CHANGED
|
@@ -24,13 +24,13 @@ effects_to_remove:
|
|
| 24 |
- chorus
|
| 25 |
- delay
|
| 26 |
datamodule:
|
| 27 |
-
batch_size:
|
| 28 |
num_workers: 8
|
| 29 |
train_dataset: None
|
| 30 |
val_dataset: None
|
| 31 |
test_dataset:
|
| 32 |
_target_: remfx.datasets.InferenceDataset
|
| 33 |
-
root:
|
| 34 |
sample_rate: ${sample_rate}
|
| 35 |
ckpts:
|
| 36 |
RandomPedalboardDistortion: "ckpts/distortion.ckpt"
|
|
@@ -38,4 +38,10 @@ ckpts:
|
|
| 38 |
RandomPedalboardReverb: "ckpts/reverb.ckpt"
|
| 39 |
RandomPedalboardChorus: "ckpts/chorus.ckpt"
|
| 40 |
RandomPedalboardDelay: "ckpts/delay.ckpt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
num_bins: 1025
|
|
|
|
| 24 |
- chorus
|
| 25 |
- delay
|
| 26 |
datamodule:
|
| 27 |
+
batch_size: 1
|
| 28 |
num_workers: 8
|
| 29 |
train_dataset: None
|
| 30 |
val_dataset: None
|
| 31 |
test_dataset:
|
| 32 |
_target_: remfx.datasets.InferenceDataset
|
| 33 |
+
root: ${oc.env:DATASET_ROOT}
|
| 34 |
sample_rate: ${sample_rate}
|
| 35 |
ckpts:
|
| 36 |
RandomPedalboardDistortion: "ckpts/distortion.ckpt"
|
|
|
|
| 38 |
RandomPedalboardReverb: "ckpts/reverb.ckpt"
|
| 39 |
RandomPedalboardChorus: "ckpts/chorus.ckpt"
|
| 40 |
RandomPedalboardDelay: "ckpts/delay.ckpt"
|
| 41 |
+
inference_effects_ordering:
|
| 42 |
+
- "RandomPedalboardDistortion"
|
| 43 |
+
- "RandomPedalboardCompressor"
|
| 44 |
+
- "RandomPedalboardReverb"
|
| 45 |
+
- "RandomPedalboardChorus"
|
| 46 |
+
- "RandomPedalboardDelay"
|
| 47 |
num_bins: 1025
|
remfx/datasets.py
CHANGED
|
@@ -361,14 +361,14 @@ class EffectDataset(Dataset):
|
|
| 361 |
|
| 362 |
|
| 363 |
class InferenceDataset(Dataset):
|
| 364 |
-
def __init__(self, root: str, sample_rate: int):
|
| 365 |
self.root = Path(root)
|
| 366 |
self.sample_rate = sample_rate
|
| 367 |
-
self.clean_paths = list(self.root.glob("clean/*.wav"))
|
| 368 |
-
self.effected_paths = list(self.root.glob("effected/*.wav"))
|
| 369 |
|
| 370 |
def __len__(self) -> int:
|
| 371 |
-
return len(self.
|
| 372 |
|
| 373 |
def __getitem__(self, idx: int) -> torch.Tensor:
|
| 374 |
clean_path = self.clean_paths[idx]
|
|
@@ -379,21 +379,20 @@ class InferenceDataset(Dataset):
|
|
| 379 |
effected = torchaudio.functional.resample(effected_audio, sr, self.sample_rate)
|
| 380 |
|
| 381 |
# Sum to mono
|
| 382 |
-
clean = torch.sum(clean, dim=0)
|
| 383 |
-
effected = torch.sum(effected, dim=0)
|
| 384 |
|
| 385 |
# Pad or trim effected to clean
|
| 386 |
-
if
|
| 387 |
-
effected =
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
effected = effected[: len(clean)]
|
| 392 |
|
| 393 |
dry_labels_tensor = torch.zeros(len(ALL_EFFECTS))
|
| 394 |
wet_labels_tensor = torch.ones(len(ALL_EFFECTS))
|
| 395 |
|
| 396 |
-
return
|
| 397 |
|
| 398 |
|
| 399 |
class EffectDatamodule(pl.LightningDataModule):
|
|
|
|
| 361 |
|
| 362 |
|
| 363 |
class InferenceDataset(Dataset):
|
| 364 |
+
def __init__(self, root: str, sample_rate: int, **kwargs):
|
| 365 |
self.root = Path(root)
|
| 366 |
self.sample_rate = sample_rate
|
| 367 |
+
self.clean_paths = sorted(list(self.root.glob("clean/*.wav")))
|
| 368 |
+
self.effected_paths = sorted(list(self.root.glob("effected/*.wav")))
|
| 369 |
|
| 370 |
def __len__(self) -> int:
|
| 371 |
+
return len(self.clean_paths)
|
| 372 |
|
| 373 |
def __getitem__(self, idx: int) -> torch.Tensor:
|
| 374 |
clean_path = self.clean_paths[idx]
|
|
|
|
| 379 |
effected = torchaudio.functional.resample(effected_audio, sr, self.sample_rate)
|
| 380 |
|
| 381 |
# Sum to mono
|
| 382 |
+
clean = torch.sum(clean, dim=0, keepdim=True)
|
| 383 |
+
effected = torch.sum(effected, dim=0, keepdim=True)
|
| 384 |
|
| 385 |
# Pad or trim effected to clean
|
| 386 |
+
if effected.shape[1] > clean.shape[1]:
|
| 387 |
+
effected = effected[:, : clean.shape[1]]
|
| 388 |
+
elif effected.shape[1] < clean.shape[1]:
|
| 389 |
+
pad_size = clean.shape[1] - effected.shape[1]
|
| 390 |
+
effected = torch.nn.functional.pad(effected, (0, pad_size))
|
|
|
|
| 391 |
|
| 392 |
dry_labels_tensor = torch.zeros(len(ALL_EFFECTS))
|
| 393 |
wet_labels_tensor = torch.ones(len(ALL_EFFECTS))
|
| 394 |
|
| 395 |
+
return effected, clean, dry_labels_tensor, wet_labels_tensor
|
| 396 |
|
| 397 |
|
| 398 |
class EffectDatamodule(pl.LightningDataModule):
|
remfx/models.py
CHANGED
|
@@ -37,7 +37,7 @@ class RemFXChainInference(pl.LightningModule):
|
|
| 37 |
self.sample_rate = sample_rate
|
| 38 |
self.effect_order = effect_order
|
| 39 |
|
| 40 |
-
def forward(self, batch, order=None):
|
| 41 |
x, y, _, rem_fx_labels = batch
|
| 42 |
# Use chain of effects defined in config
|
| 43 |
if order:
|
|
@@ -52,25 +52,30 @@ class RemFXChainInference(pl.LightningModule):
|
|
| 52 |
with torch.no_grad():
|
| 53 |
for i, (elem, effects_list) in enumerate(zip(x, effects)):
|
| 54 |
elem = elem.unsqueeze(0) # Add batch dim
|
| 55 |
-
effect_chain_idx = [
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
]
|
|
|
|
| 58 |
# log_wandb_audio_batch(
|
| 59 |
# logger=self.logger,
|
| 60 |
-
# id=f"{i}_Before",
|
| 61 |
# samples=elem.cpu(),
|
| 62 |
# sampling_rate=self.sample_rate,
|
| 63 |
-
# caption=
|
| 64 |
# )
|
| 65 |
-
for
|
| 66 |
# Sample the model
|
| 67 |
-
elem = self.model[
|
| 68 |
# log_wandb_audio_batch(
|
| 69 |
# logger=self.logger,
|
| 70 |
-
# id=f"{i}_{effect}",
|
| 71 |
# samples=elem.cpu(),
|
| 72 |
# sampling_rate=self.sample_rate,
|
| 73 |
-
# caption=
|
| 74 |
# )
|
| 75 |
output.append(elem.squeeze(0))
|
| 76 |
output = torch.stack(output)
|
|
@@ -81,8 +86,8 @@ class RemFXChainInference(pl.LightningModule):
|
|
| 81 |
def test_step(self, batch, batch_idx):
|
| 82 |
x, y, _, _ = batch # x, y = (B, C, T), (B, C, T)
|
| 83 |
# Random order
|
| 84 |
-
random.shuffle(self.effect_order)
|
| 85 |
-
loss, output = self.forward(batch, order=self.effect_order)
|
| 86 |
# Crop target to match output
|
| 87 |
if output.shape[-1] < y.shape[-1]:
|
| 88 |
y = causal_crop(y, output.shape[-1])
|
|
@@ -96,8 +101,7 @@ class RemFXChainInference(pl.LightningModule):
|
|
| 96 |
else:
|
| 97 |
negate = 1
|
| 98 |
self.log(
|
| 99 |
-
f"test_{metric}
|
| 100 |
-
+ "".join(self.effect_order).replace("RandomPedalboard", ""),
|
| 101 |
negate * self.metrics[metric](output, y),
|
| 102 |
on_step=False,
|
| 103 |
on_epoch=True,
|
|
|
|
| 37 |
self.sample_rate = sample_rate
|
| 38 |
self.effect_order = effect_order
|
| 39 |
|
| 40 |
+
def forward(self, batch, batch_idx, order=None):
|
| 41 |
x, y, _, rem_fx_labels = batch
|
| 42 |
# Use chain of effects defined in config
|
| 43 |
if order:
|
|
|
|
| 52 |
with torch.no_grad():
|
| 53 |
for i, (elem, effects_list) in enumerate(zip(x, effects)):
|
| 54 |
elem = elem.unsqueeze(0) # Add batch dim
|
| 55 |
+
# effect_chain_idx = [
|
| 56 |
+
# effects_order.index(effect.__name__) for effect in effects_list
|
| 57 |
+
# ]
|
| 58 |
+
effect_list_names = [effect.__name__ for effect in effects_list]
|
| 59 |
+
effects = [
|
| 60 |
+
effect for effect in effects_order if effect in effect_list_names
|
| 61 |
]
|
| 62 |
+
|
| 63 |
# log_wandb_audio_batch(
|
| 64 |
# logger=self.logger,
|
| 65 |
+
# id=f"{batch_idx}_{i}_Before",
|
| 66 |
# samples=elem.cpu(),
|
| 67 |
# sampling_rate=self.sample_rate,
|
| 68 |
+
# caption=effects,
|
| 69 |
# )
|
| 70 |
+
for effect in effects:
|
| 71 |
# Sample the model
|
| 72 |
+
elem = self.model[effect].model.sample(elem)
|
| 73 |
# log_wandb_audio_batch(
|
| 74 |
# logger=self.logger,
|
| 75 |
+
# id=f"{batch_idx}_{i}_{effect}",
|
| 76 |
# samples=elem.cpu(),
|
| 77 |
# sampling_rate=self.sample_rate,
|
| 78 |
+
# caption=effects,
|
| 79 |
# )
|
| 80 |
output.append(elem.squeeze(0))
|
| 81 |
output = torch.stack(output)
|
|
|
|
| 86 |
def test_step(self, batch, batch_idx):
|
| 87 |
x, y, _, _ = batch # x, y = (B, C, T), (B, C, T)
|
| 88 |
# Random order
|
| 89 |
+
# random.shuffle(self.effect_order)
|
| 90 |
+
loss, output = self.forward(batch, batch_idx, order=self.effect_order)
|
| 91 |
# Crop target to match output
|
| 92 |
if output.shape[-1] < y.shape[-1]:
|
| 93 |
y = causal_crop(y, output.shape[-1])
|
|
|
|
| 101 |
else:
|
| 102 |
negate = 1
|
| 103 |
self.log(
|
| 104 |
+
f"test_{metric}", # + "".join(self.effect_order).replace("RandomPedalboard", ""),
|
|
|
|
| 105 |
negate * self.metrics[metric](output, y),
|
| 106 |
on_step=False,
|
| 107 |
on_epoch=True,
|
scripts/chain_inference.py
CHANGED
|
@@ -47,17 +47,12 @@ def main(cfg: DictConfig):
|
|
| 47 |
logger=logger,
|
| 48 |
)
|
| 49 |
|
|
|
|
| 50 |
inference_model = RemFXChainInference(
|
| 51 |
models,
|
| 52 |
sample_rate=cfg.sample_rate,
|
| 53 |
num_bins=cfg.num_bins,
|
| 54 |
-
effect_order=
|
| 55 |
-
"RandomPedalboardDistortion",
|
| 56 |
-
"RandomPedalboardCompressor",
|
| 57 |
-
"RandomPedalboardReverb",
|
| 58 |
-
"RandomPedalboardChorus",
|
| 59 |
-
"RandomPedalboardDelay",
|
| 60 |
-
],
|
| 61 |
)
|
| 62 |
trainer.test(model=inference_model, datamodule=datamodule)
|
| 63 |
|
|
|
|
| 47 |
logger=logger,
|
| 48 |
)
|
| 49 |
|
| 50 |
+
log.info("Instantiating Inference Model")
|
| 51 |
inference_model = RemFXChainInference(
|
| 52 |
models,
|
| 53 |
sample_rate=cfg.sample_rate,
|
| 54 |
num_bins=cfg.num_bins,
|
| 55 |
+
effect_order=cfg.inference_effects_ordering,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
)
|
| 57 |
trainer.test(model=inference_model, datamodule=datamodule)
|
| 58 |
|