Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	Merge branch 'main' into pr/11
Browse files- app.py +12 -1
- pdm.lock +0 -0
- pyproject.toml +4 -2
- requirements.txt +4 -2
- src/distilabel_dataset_generator/apps/sft.py +318 -32
- src/distilabel_dataset_generator/pipelines/embeddings.py +16 -0
- src/distilabel_dataset_generator/pipelines/sft.py +3 -3
- src/distilabel_dataset_generator/utils.py +17 -1
    	
        app.py
    CHANGED
    
    | @@ -55,6 +55,17 @@ demo = gr.TabbedInterface( | |
| 55 | 
             
                            margin-bottom: 20px;
         | 
| 56 | 
             
                        }
         | 
| 57 | 
             
                    }
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 58 | 
             
                </style>
         | 
| 59 | 
             
                <div class="header-container">
         | 
| 60 | 
             
                    <div class="logo-container">
         | 
| @@ -63,7 +74,7 @@ demo = gr.TabbedInterface( | |
| 63 | 
             
                        </a>
         | 
| 64 | 
             
                    </div>
         | 
| 65 | 
             
                    <div class="title-container">
         | 
| 66 | 
            -
                        <h1 style="margin: 0; font-size: 2em;">🧬 | 
| 67 | 
             
                        <p style="margin: 10px 0 0 0; color: #666; font-size: 1.1em;">Build datasets using natural language</p>
         | 
| 68 | 
             
                    </div>
         | 
| 69 | 
             
                </div>
         | 
|  | |
| 55 | 
             
                            margin-bottom: 20px;
         | 
| 56 | 
             
                        }
         | 
| 57 | 
             
                    }
         | 
| 58 | 
            +
                    button[role="tab"].selected,
         | 
| 59 | 
            +
                    button[role="tab"][aria-selected="true"],
         | 
| 60 | 
            +
                    button[role="tab"][data-tab-id][aria-selected="true"] {
         | 
| 61 | 
            +
                        background-color: #000000;
         | 
| 62 | 
            +
                        color: white;
         | 
| 63 | 
            +
                        border: none;
         | 
| 64 | 
            +
                        font-size: 16px;
         | 
| 65 | 
            +
                        font-weight: bold;
         | 
| 66 | 
            +
                        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
         | 
| 67 | 
            +
                        transition: background-color 0.3s ease, color 0.3s ease;
         | 
| 68 | 
            +
                    }
         | 
| 69 | 
             
                </style>
         | 
| 70 | 
             
                <div class="header-container">
         | 
| 71 | 
             
                    <div class="logo-container">
         | 
|  | |
| 74 | 
             
                        </a>
         | 
| 75 | 
             
                    </div>
         | 
| 76 | 
             
                    <div class="title-container">
         | 
| 77 | 
            +
                        <h1 style="margin: 0; font-size: 2em;">🧬 Synthetic Data Generator</h1>
         | 
| 78 | 
             
                        <p style="margin: 10px 0 0 0; color: #666; font-size: 1.1em;">Build datasets using natural language</p>
         | 
| 79 | 
             
                    </div>
         | 
| 80 | 
             
                </div>
         | 
    	
        pdm.lock
    CHANGED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        pyproject.toml
    CHANGED
    
    | @@ -6,11 +6,13 @@ authors = [ | |
| 6 | 
             
                {name = "davidberenstein1957", email = "[email protected]"},
         | 
| 7 | 
             
            ]
         | 
| 8 | 
             
            dependencies = [
         | 
| 9 | 
            -
                "distilabel[hf-inference-endpoints] | 
| 10 | 
             
                "gradio[oauth]<5,>=4.38",
         | 
| 11 | 
             
                "transformers>=4.44.2",
         | 
|  | |
|  | |
| 12 | 
             
            ]
         | 
| 13 | 
            -
            requires-python = " | 
| 14 | 
             
            readme = "README.md"
         | 
| 15 | 
             
            license = {text = "apache 2"}
         | 
| 16 |  | 
|  | |
| 6 | 
             
                {name = "davidberenstein1957", email = "[email protected]"},
         | 
| 7 | 
             
            ]
         | 
| 8 | 
             
            dependencies = [
         | 
| 9 | 
            +
                "distilabel[hf-inference-endpoints,argilla]==1.4.0",
         | 
| 10 | 
             
                "gradio[oauth]<5,>=4.38",
         | 
| 11 | 
             
                "transformers>=4.44.2",
         | 
| 12 | 
            +
                "sentence-transformers>=3.2.0",
         | 
| 13 | 
            +
                "model2vec>=0.2.4",
         | 
| 14 | 
             
            ]
         | 
| 15 | 
            +
            requires-python = "<3.13,>=3.10"
         | 
| 16 | 
             
            readme = "README.md"
         | 
| 17 | 
             
            license = {text = "apache 2"}
         | 
| 18 |  | 
    	
        requirements.txt
    CHANGED
    
    | @@ -1,4 +1,6 @@ | |
| 1 | 
             
            transformers
         | 
| 2 | 
             
            gradio[oauth]
         | 
| 3 | 
            -
            distilabel[hf-inference-endpoints] | 
| 4 | 
            -
            beautifulsoup4
         | 
|  | |
|  | 
|  | |
| 1 | 
             
            transformers
         | 
| 2 | 
             
            gradio[oauth]
         | 
| 3 | 
            +
            distilabel[hf-inference-endpoints,argilla]
         | 
| 4 | 
            +
            beautifulsoup4
         | 
| 5 | 
            +
            sentence-transformers
         | 
| 6 | 
            +
            model2vec
         | 
    	
        src/distilabel_dataset_generator/apps/sft.py
    CHANGED
    
    | @@ -1,6 +1,9 @@ | |
|  | |
| 1 | 
             
            import io
         | 
| 2 | 
            -
             | 
|  | |
| 3 |  | 
|  | |
| 4 | 
             
            import gradio as gr
         | 
| 5 | 
             
            import pandas as pd
         | 
| 6 | 
             
            from datasets import Dataset
         | 
| @@ -8,7 +11,12 @@ from distilabel.distiset import Distiset | |
| 8 | 
             
            from distilabel.steps.tasks.text_generation import TextGeneration
         | 
| 9 | 
             
            from gradio.oauth import OAuthToken
         | 
| 10 | 
             
            from huggingface_hub import upload_file
         | 
|  | |
| 11 |  | 
|  | |
|  | |
|  | |
|  | |
| 12 | 
             
            from src.distilabel_dataset_generator.pipelines.sft import (
         | 
| 13 | 
             
                DEFAULT_BATCH_SIZE,
         | 
| 14 | 
             
                DEFAULT_DATASET_DESCRIPTIONS,
         | 
| @@ -21,12 +29,21 @@ from src.distilabel_dataset_generator.pipelines.sft import ( | |
| 21 | 
             
                get_response_generator,
         | 
| 22 | 
             
            )
         | 
| 23 | 
             
            from src.distilabel_dataset_generator.utils import (
         | 
|  | |
| 24 | 
             
                get_base_app,
         | 
| 25 | 
             
                get_org_dropdown,
         | 
| 26 | 
             
                swap_visibilty,
         | 
| 27 | 
             
            )
         | 
| 28 |  | 
| 29 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 30 | 
             
            def generate_system_prompt(dataset_description, progress=gr.Progress()):
         | 
| 31 | 
             
                progress(0.0, desc="Generating system prompt")
         | 
| 32 | 
             
                if dataset_description in DEFAULT_DATASET_DESCRIPTIONS:
         | 
| @@ -82,7 +99,7 @@ def generate_dataset( | |
| 82 | 
             
                num_rows: int = 5,
         | 
| 83 | 
             
                is_sample: bool = False,
         | 
| 84 | 
             
                progress=gr.Progress(),
         | 
| 85 | 
            -
            ):
         | 
| 86 | 
             
                progress(0.0, desc="(1/2) Generating instructions")
         | 
| 87 | 
             
                magpie_generator = get_magpie_generator(
         | 
| 88 | 
             
                    num_turns, num_rows, system_prompt, is_sample
         | 
| @@ -191,7 +208,12 @@ def push_to_hub( | |
| 191 | 
             
                repo_name: str = None,
         | 
| 192 | 
             
                oauth_token: Union[OAuthToken, None] = None,
         | 
| 193 | 
             
                progress=gr.Progress(),
         | 
| 194 | 
            -
            ):
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 195 | 
             
                progress(0.1, desc="Setting up dataset")
         | 
| 196 | 
             
                repo_id = _check_push_to_hub(org_name, repo_name)
         | 
| 197 | 
             
                distiset = Distiset(
         | 
| @@ -208,7 +230,167 @@ def push_to_hub( | |
| 208 | 
             
                    create_pr=False,
         | 
| 209 | 
             
                )
         | 
| 210 | 
             
                progress(1.0, desc="Dataset pushed to hub")
         | 
| 211 | 
            -
                return  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 212 |  | 
| 213 |  | 
| 214 | 
             
            def upload_pipeline_code(
         | 
| @@ -296,7 +478,7 @@ with get_base_app() as app: | |
| 296 | 
             
                    # Add a header for the full dataset generation section
         | 
| 297 | 
             
                    gr.Markdown("## Generate full dataset")
         | 
| 298 | 
             
                    gr.Markdown(
         | 
| 299 | 
            -
                        "Once you're satisfied with the sample, generate a larger dataset and push it to the Hub."
         | 
| 300 | 
             
                    )
         | 
| 301 |  | 
| 302 | 
             
                    with gr.Column() as push_to_hub_ui:
         | 
| @@ -316,27 +498,64 @@ with get_base_app() as app: | |
| 316 | 
             
                                maximum=500,
         | 
| 317 | 
             
                                info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
         | 
| 318 | 
             
                            )
         | 
| 319 | 
            -
             | 
| 320 | 
            -
             | 
| 321 | 
            -
                             | 
| 322 | 
            -
                                 | 
| 323 | 
            -
             | 
| 324 | 
            -
             | 
| 325 | 
            -
             | 
| 326 | 
            -
             | 
| 327 | 
            -
             | 
| 328 | 
            -
             | 
| 329 | 
            -
             | 
| 330 | 
            -
             | 
| 331 | 
            -
             | 
| 332 | 
            -
             | 
| 333 | 
            -
             | 
| 334 | 
            -
             | 
| 335 | 
            -
             | 
| 336 | 
            -
             | 
| 337 | 
            -
             | 
| 338 | 
            -
             | 
| 339 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 340 | 
             
                        with gr.Row():
         | 
| 341 | 
             
                            final_dataset = gr.Dataframe(
         | 
| 342 | 
             
                                value=DEFAULT_DATASETS[0],
         | 
| @@ -348,7 +567,28 @@ with get_base_app() as app: | |
| 348 | 
             
                        with gr.Row():
         | 
| 349 | 
             
                            success_message = gr.Markdown(visible=False)
         | 
| 350 |  | 
| 351 | 
            -
                def  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 352 | 
             
                    return gr.Markdown(
         | 
| 353 | 
             
                        value=f"""
         | 
| 354 | 
             
                        <div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
         | 
| @@ -361,7 +601,7 @@ with get_base_app() as app: | |
| 361 | 
             
                                </a>
         | 
| 362 | 
             
                            </p>
         | 
| 363 | 
             
                        </div>
         | 
| 364 | 
            -
             | 
| 365 | 
             
                        visible=True,
         | 
| 366 | 
             
                    )
         | 
| 367 |  | 
| @@ -390,8 +630,11 @@ with get_base_app() as app: | |
| 390 | 
             
                    inputs=[sample_dataset],
         | 
| 391 | 
             
                    outputs=[final_dataset],
         | 
| 392 | 
             
                )
         | 
| 393 | 
            -
             | 
| 394 | 
            -
             | 
|  | |
|  | |
|  | |
| 395 | 
             
                    fn=hide_success_message,
         | 
| 396 | 
             
                    outputs=[success_message],
         | 
| 397 | 
             
                ).then(
         | 
| @@ -401,6 +644,30 @@ with get_base_app() as app: | |
| 401 | 
             
                    show_progress=True,
         | 
| 402 | 
             
                )
         | 
| 403 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 404 | 
             
                btn_generate_and_push_to_hub.click(
         | 
| 405 | 
             
                    fn=hide_success_message,
         | 
| 406 | 
             
                    outputs=[success_message],
         | 
| @@ -420,7 +687,7 @@ with get_base_app() as app: | |
| 420 | 
             
                    outputs=[],
         | 
| 421 | 
             
                    show_progress=True,
         | 
| 422 | 
             
                ).success(
         | 
| 423 | 
            -
                    fn= | 
| 424 | 
             
                    inputs=[org_name, repo_name],
         | 
| 425 | 
             
                    outputs=[success_message],
         | 
| 426 | 
             
                )
         | 
| @@ -439,11 +706,30 @@ with get_base_app() as app: | |
| 439 | 
             
                    outputs=[],
         | 
| 440 | 
             
                    show_progress=True,
         | 
| 441 | 
             
                ).success(
         | 
| 442 | 
            -
                    fn= | 
| 443 | 
             
                    inputs=[org_name, repo_name],
         | 
| 444 | 
             
                    outputs=[success_message],
         | 
| 445 | 
             
                )
         | 
| 446 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 447 | 
             
                system_prompt.change(
         | 
| 448 | 
             
                    fn=generate_pipeline_code,
         | 
| 449 | 
             
                    inputs=[system_prompt, num_turns, num_rows],
         | 
|  | |
| 1 | 
            +
            import ast
         | 
| 2 | 
             
            import io
         | 
| 3 | 
            +
            import uuid
         | 
| 4 | 
            +
            from typing import Dict, List, Union
         | 
| 5 |  | 
| 6 | 
            +
            import argilla as rg
         | 
| 7 | 
             
            import gradio as gr
         | 
| 8 | 
             
            import pandas as pd
         | 
| 9 | 
             
            from datasets import Dataset
         | 
|  | |
| 11 | 
             
            from distilabel.steps.tasks.text_generation import TextGeneration
         | 
| 12 | 
             
            from gradio.oauth import OAuthToken
         | 
| 13 | 
             
            from huggingface_hub import upload_file
         | 
| 14 | 
            +
            from huggingface_hub.hf_api import HfApi
         | 
| 15 |  | 
| 16 | 
            +
            from src.distilabel_dataset_generator.pipelines.embeddings import (
         | 
| 17 | 
            +
                get_embeddings,
         | 
| 18 | 
            +
                get_sentence_embedding_dimensions,
         | 
| 19 | 
            +
            )
         | 
| 20 | 
             
            from src.distilabel_dataset_generator.pipelines.sft import (
         | 
| 21 | 
             
                DEFAULT_BATCH_SIZE,
         | 
| 22 | 
             
                DEFAULT_DATASET_DESCRIPTIONS,
         | 
|  | |
| 29 | 
             
                get_response_generator,
         | 
| 30 | 
             
            )
         | 
| 31 | 
             
            from src.distilabel_dataset_generator.utils import (
         | 
| 32 | 
            +
                get_argilla_client,
         | 
| 33 | 
             
                get_base_app,
         | 
| 34 | 
             
                get_org_dropdown,
         | 
| 35 | 
             
                swap_visibilty,
         | 
| 36 | 
             
            )
         | 
| 37 |  | 
| 38 |  | 
| 39 | 
            +
            def convert_to_list_of_dicts(messages: str) -> List[Dict[str, str]]:
         | 
| 40 | 
            +
                return ast.literal_eval(
         | 
| 41 | 
            +
                    messages.replace("'user'}", "'user'},")
         | 
| 42 | 
            +
                    .replace("'system'}", "'system'},")
         | 
| 43 | 
            +
                    .replace("'assistant'}", "'assistant'},")
         | 
| 44 | 
            +
                )
         | 
| 45 | 
            +
             | 
| 46 | 
            +
             | 
| 47 | 
             
            def generate_system_prompt(dataset_description, progress=gr.Progress()):
         | 
| 48 | 
             
                progress(0.0, desc="Generating system prompt")
         | 
| 49 | 
             
                if dataset_description in DEFAULT_DATASET_DESCRIPTIONS:
         | 
|  | |
| 99 | 
             
                num_rows: int = 5,
         | 
| 100 | 
             
                is_sample: bool = False,
         | 
| 101 | 
             
                progress=gr.Progress(),
         | 
| 102 | 
            +
            ) -> pd.DataFrame:
         | 
| 103 | 
             
                progress(0.0, desc="(1/2) Generating instructions")
         | 
| 104 | 
             
                magpie_generator = get_magpie_generator(
         | 
| 105 | 
             
                    num_turns, num_rows, system_prompt, is_sample
         | 
|  | |
| 208 | 
             
                repo_name: str = None,
         | 
| 209 | 
             
                oauth_token: Union[OAuthToken, None] = None,
         | 
| 210 | 
             
                progress=gr.Progress(),
         | 
| 211 | 
            +
            ) -> pd.DataFrame:
         | 
| 212 | 
            +
                original_dataframe = dataframe.copy(deep=True)
         | 
| 213 | 
            +
                if "messages" in dataframe.columns:
         | 
| 214 | 
            +
                    dataframe["messages"] = dataframe["messages"].apply(
         | 
| 215 | 
            +
                        lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x
         | 
| 216 | 
            +
                    )
         | 
| 217 | 
             
                progress(0.1, desc="Setting up dataset")
         | 
| 218 | 
             
                repo_id = _check_push_to_hub(org_name, repo_name)
         | 
| 219 | 
             
                distiset = Distiset(
         | 
|  | |
| 230 | 
             
                    create_pr=False,
         | 
| 231 | 
             
                )
         | 
| 232 | 
             
                progress(1.0, desc="Dataset pushed to hub")
         | 
| 233 | 
            +
                return original_dataframe
         | 
| 234 | 
            +
             | 
| 235 | 
            +
             | 
| 236 | 
            +
            def push_to_argilla(
         | 
| 237 | 
            +
                dataframe: pd.DataFrame,
         | 
| 238 | 
            +
                dataset_name: str,
         | 
| 239 | 
            +
                oauth_token: Union[OAuthToken, None] = None,
         | 
| 240 | 
            +
                progress=gr.Progress(),
         | 
| 241 | 
            +
            ) -> pd.DataFrame:
         | 
| 242 | 
            +
                original_dataframe = dataframe.copy(deep=True)
         | 
| 243 | 
            +
                if "messages" in dataframe.columns:
         | 
| 244 | 
            +
                    dataframe["messages"] = dataframe["messages"].apply(
         | 
| 245 | 
            +
                        lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x
         | 
| 246 | 
            +
                    )
         | 
| 247 | 
            +
                try:
         | 
| 248 | 
            +
                    progress(0.1, desc="Setting up user and workspace")
         | 
| 249 | 
            +
                    client = get_argilla_client()
         | 
| 250 | 
            +
                    hf_user = HfApi().whoami(token=oauth_token.token)["name"]
         | 
| 251 | 
            +
                    if "messages" in dataframe.columns:
         | 
| 252 | 
            +
                        settings = rg.Settings(
         | 
| 253 | 
            +
                            fields=[
         | 
| 254 | 
            +
                                rg.ChatField(
         | 
| 255 | 
            +
                                    name="messages",
         | 
| 256 | 
            +
                                    description="The messages in the conversation",
         | 
| 257 | 
            +
                                    title="Messages",
         | 
| 258 | 
            +
                                ),
         | 
| 259 | 
            +
                            ],
         | 
| 260 | 
            +
                            questions=[
         | 
| 261 | 
            +
                                rg.RatingQuestion(
         | 
| 262 | 
            +
                                    name="rating",
         | 
| 263 | 
            +
                                    title="Rating",
         | 
| 264 | 
            +
                                    description="The rating of the conversation",
         | 
| 265 | 
            +
                                    values=list(range(1, 6)),
         | 
| 266 | 
            +
                                ),
         | 
| 267 | 
            +
                            ],
         | 
| 268 | 
            +
                            metadata=[
         | 
| 269 | 
            +
                                rg.IntegerMetadataProperty(
         | 
| 270 | 
            +
                                    name="user_message_length", title="User Message Length"
         | 
| 271 | 
            +
                                ),
         | 
| 272 | 
            +
                                rg.IntegerMetadataProperty(
         | 
| 273 | 
            +
                                    name="assistant_message_length",
         | 
| 274 | 
            +
                                    title="Assistant Message Length",
         | 
| 275 | 
            +
                                ),
         | 
| 276 | 
            +
                            ],
         | 
| 277 | 
            +
                            vectors=[
         | 
| 278 | 
            +
                                rg.VectorField(
         | 
| 279 | 
            +
                                    name="messages_embeddings",
         | 
| 280 | 
            +
                                    dimensions=get_sentence_embedding_dimensions(),
         | 
| 281 | 
            +
                                )
         | 
| 282 | 
            +
                            ],
         | 
| 283 | 
            +
                            guidelines="Please review the conversation and provide a score for the assistant's response.",
         | 
| 284 | 
            +
                        )
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                        dataframe["user_message_length"] = dataframe["messages"].apply(
         | 
| 287 | 
            +
                            lambda x: sum([len(y["content"]) for y in x if y["role"] == "user"])
         | 
| 288 | 
            +
                        )
         | 
| 289 | 
            +
                        dataframe["assistant_message_length"] = dataframe["messages"].apply(
         | 
| 290 | 
            +
                            lambda x: sum(
         | 
| 291 | 
            +
                                [len(y["content"]) for y in x if y["role"] == "assistant"]
         | 
| 292 | 
            +
                            )
         | 
| 293 | 
            +
                        )
         | 
| 294 | 
            +
                        dataframe["messages_embeddings"] = get_embeddings(
         | 
| 295 | 
            +
                            dataframe["messages"].apply(
         | 
| 296 | 
            +
                                lambda x: " ".join([y["content"] for y in x])
         | 
| 297 | 
            +
                            )
         | 
| 298 | 
            +
                        )
         | 
| 299 | 
            +
                    else:
         | 
| 300 | 
            +
                        settings = rg.Settings(
         | 
| 301 | 
            +
                            fields=[
         | 
| 302 | 
            +
                                rg.TextField(
         | 
| 303 | 
            +
                                    name="system_prompt",
         | 
| 304 | 
            +
                                    title="System Prompt",
         | 
| 305 | 
            +
                                    description="The system prompt used for the conversation",
         | 
| 306 | 
            +
                                    required=False,
         | 
| 307 | 
            +
                                ),
         | 
| 308 | 
            +
                                rg.TextField(
         | 
| 309 | 
            +
                                    name="prompt",
         | 
| 310 | 
            +
                                    title="Prompt",
         | 
| 311 | 
            +
                                    description="The prompt used for the conversation",
         | 
| 312 | 
            +
                                ),
         | 
| 313 | 
            +
                                rg.TextField(
         | 
| 314 | 
            +
                                    name="completion",
         | 
| 315 | 
            +
                                    title="Completion",
         | 
| 316 | 
            +
                                    description="The completion from the assistant",
         | 
| 317 | 
            +
                                ),
         | 
| 318 | 
            +
                            ],
         | 
| 319 | 
            +
                            questions=[
         | 
| 320 | 
            +
                                rg.RatingQuestion(
         | 
| 321 | 
            +
                                    name="rating",
         | 
| 322 | 
            +
                                    title="Rating",
         | 
| 323 | 
            +
                                    description="The rating of the conversation",
         | 
| 324 | 
            +
                                    values=list(range(1, 6)),
         | 
| 325 | 
            +
                                ),
         | 
| 326 | 
            +
                            ],
         | 
| 327 | 
            +
                            metadata=[
         | 
| 328 | 
            +
                                rg.IntegerMetadataProperty(
         | 
| 329 | 
            +
                                    name="prompt_length", title="Prompt Length"
         | 
| 330 | 
            +
                                ),
         | 
| 331 | 
            +
                                rg.IntegerMetadataProperty(
         | 
| 332 | 
            +
                                    name="completion_length", title="Completion Length"
         | 
| 333 | 
            +
                                ),
         | 
| 334 | 
            +
                            ],
         | 
| 335 | 
            +
                            vectors=[
         | 
| 336 | 
            +
                                rg.VectorField(
         | 
| 337 | 
            +
                                    name="prompt_embeddings",
         | 
| 338 | 
            +
                                    dimensions=get_sentence_embedding_dimensions(),
         | 
| 339 | 
            +
                                )
         | 
| 340 | 
            +
                            ],
         | 
| 341 | 
            +
                            guidelines="Please review the conversation and correct the prompt and completion where needed.",
         | 
| 342 | 
            +
                        )
         | 
| 343 | 
            +
                        dataframe["prompt_length"] = dataframe["prompt"].apply(len)
         | 
| 344 | 
            +
                        dataframe["completion_length"] = dataframe["completion"].apply(len)
         | 
| 345 | 
            +
                        dataframe["prompt_embeddings"] = get_embeddings(dataframe["prompt"])
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                    progress(0.5, desc="Creating dataset")
         | 
| 348 | 
            +
                    rg_dataset = client.datasets(name=dataset_name, workspace=hf_user)
         | 
| 349 | 
            +
                    if rg_dataset is None:
         | 
| 350 | 
            +
                        rg_dataset = rg.Dataset(
         | 
| 351 | 
            +
                            name=dataset_name,
         | 
| 352 | 
            +
                            workspace=hf_user,
         | 
| 353 | 
            +
                            settings=settings,
         | 
| 354 | 
            +
                            client=client,
         | 
| 355 | 
            +
                        )
         | 
| 356 | 
            +
                        rg_dataset = rg_dataset.create()
         | 
| 357 | 
            +
                    progress(0.7, desc="Pushing dataset to Argilla")
         | 
| 358 | 
            +
                    hf_dataset = Dataset.from_pandas(dataframe)
         | 
| 359 | 
            +
                    rg_dataset.records.log(records=hf_dataset)
         | 
| 360 | 
            +
                    progress(1.0, desc="Dataset pushed to Argilla")
         | 
| 361 | 
            +
                except Exception as e:
         | 
| 362 | 
            +
                    raise gr.Error(f"Error pushing dataset to Argilla: {e}")
         | 
| 363 | 
            +
                return original_dataframe
         | 
| 364 | 
            +
             | 
| 365 | 
            +
             | 
| 366 | 
            +
            def validate_argilla_dataset_name(
         | 
| 367 | 
            +
                dataset_name: str,
         | 
| 368 | 
            +
                final_dataset: pd.DataFrame,
         | 
| 369 | 
            +
                add_to_existing_dataset: bool,
         | 
| 370 | 
            +
                oauth_token: Union[OAuthToken, None] = None,
         | 
| 371 | 
            +
                progress=gr.Progress(),
         | 
| 372 | 
            +
            ) -> str:
         | 
| 373 | 
            +
                progress(0, desc="Validating dataset configuration")
         | 
| 374 | 
            +
                hf_user = HfApi().whoami(token=oauth_token.token)["name"]
         | 
| 375 | 
            +
                client = get_argilla_client()
         | 
| 376 | 
            +
                if dataset_name is None or dataset_name == "":
         | 
| 377 | 
            +
                    raise gr.Error("Dataset name is required")
         | 
| 378 | 
            +
                # Create user if it doesn't exist
         | 
| 379 | 
            +
                rg_user = client.users(username=hf_user)
         | 
| 380 | 
            +
                if rg_user is None:
         | 
| 381 | 
            +
                    rg_user = client.users.add(
         | 
| 382 | 
            +
                        rg.User(username=hf_user, role="admin", password=str(uuid.uuid4()))
         | 
| 383 | 
            +
                    )
         | 
| 384 | 
            +
                # Create workspace if it doesn't exist
         | 
| 385 | 
            +
                workspace = client.workspaces(name=hf_user)
         | 
| 386 | 
            +
                if workspace is None:
         | 
| 387 | 
            +
                    workspace = client.workspaces.add(rg.Workspace(name=hf_user))
         | 
| 388 | 
            +
                    workspace.add_user(rg_user)
         | 
| 389 | 
            +
                # Check if dataset exists
         | 
| 390 | 
            +
                dataset = client.datasets(name=dataset_name, workspace=hf_user)
         | 
| 391 | 
            +
                if dataset and not add_to_existing_dataset:
         | 
| 392 | 
            +
                    raise gr.Error(f"Dataset {dataset_name} already exists")
         | 
| 393 | 
            +
                return final_dataset
         | 
| 394 |  | 
| 395 |  | 
| 396 | 
             
            def upload_pipeline_code(
         | 
|  | |
| 478 | 
             
                    # Add a header for the full dataset generation section
         | 
| 479 | 
             
                    gr.Markdown("## Generate full dataset")
         | 
| 480 | 
             
                    gr.Markdown(
         | 
| 481 | 
            +
                        "Once you're satisfied with the sample, generate a larger dataset and push it to Argilla or the Hugging Face Hub."
         | 
| 482 | 
             
                    )
         | 
| 483 |  | 
| 484 | 
             
                    with gr.Column() as push_to_hub_ui:
         | 
|  | |
| 498 | 
             
                                maximum=500,
         | 
| 499 | 
             
                                info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
         | 
| 500 | 
             
                            )
         | 
| 501 | 
            +
             | 
| 502 | 
            +
                        with gr.Tab(label="Argilla"):
         | 
| 503 | 
            +
                            if get_argilla_client() is not None:
         | 
| 504 | 
            +
                                with gr.Row(variant="panel"):
         | 
| 505 | 
            +
                                    dataset_name = gr.Textbox(
         | 
| 506 | 
            +
                                        label="Dataset name",
         | 
| 507 | 
            +
                                        placeholder="dataset_name",
         | 
| 508 | 
            +
                                        value="my-distiset",
         | 
| 509 | 
            +
                                    )
         | 
| 510 | 
            +
                                    add_to_existing_dataset = gr.Checkbox(
         | 
| 511 | 
            +
                                        label="Allow adding records to existing dataset",
         | 
| 512 | 
            +
                                        info="When selected, you do need to ensure the number of turns in the conversation is the same as the number of turns in the existing dataset.",
         | 
| 513 | 
            +
                                        value=False,
         | 
| 514 | 
            +
                                        interactive=True,
         | 
| 515 | 
            +
                                        scale=0.5,
         | 
| 516 | 
            +
                                    )
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                                with gr.Row(variant="panel"):
         | 
| 519 | 
            +
                                    btn_generate_full_dataset_copy = gr.Button(
         | 
| 520 | 
            +
                                        value="Generate", variant="primary", scale=2
         | 
| 521 | 
            +
                                    )
         | 
| 522 | 
            +
                                    btn_generate_and_push_to_argilla = gr.Button(
         | 
| 523 | 
            +
                                        value="Generate and Push to Argilla",
         | 
| 524 | 
            +
                                        variant="primary",
         | 
| 525 | 
            +
                                        scale=2,
         | 
| 526 | 
            +
                                    )
         | 
| 527 | 
            +
                                    btn_push_to_argilla = gr.Button(
         | 
| 528 | 
            +
                                        value="Push to Argilla", variant="primary", scale=2
         | 
| 529 | 
            +
                                    )
         | 
| 530 | 
            +
                            else:
         | 
| 531 | 
            +
                                gr.Markdown(
         | 
| 532 | 
            +
                                    "Please add `ARGILLA_API_URL` and `ARGILLA_API_KEY` to use Argilla or export the dataset to the Hugging Face Hub."
         | 
| 533 | 
            +
                                )
         | 
| 534 | 
            +
                        with gr.Tab("Hugging Face Hub"):
         | 
| 535 | 
            +
                            with gr.Row(variant="panel"):
         | 
| 536 | 
            +
                                org_name = get_org_dropdown()
         | 
| 537 | 
            +
                                repo_name = gr.Textbox(
         | 
| 538 | 
            +
                                    label="Repo name",
         | 
| 539 | 
            +
                                    placeholder="dataset_name",
         | 
| 540 | 
            +
                                    value="my-distiset",
         | 
| 541 | 
            +
                                )
         | 
| 542 | 
            +
                                private = gr.Checkbox(
         | 
| 543 | 
            +
                                    label="Private dataset",
         | 
| 544 | 
            +
                                    value=True,
         | 
| 545 | 
            +
                                    interactive=True,
         | 
| 546 | 
            +
                                    scale=0.5,
         | 
| 547 | 
            +
                                )
         | 
| 548 | 
            +
                            with gr.Row(variant="panel"):
         | 
| 549 | 
            +
                                btn_generate_full_dataset = gr.Button(
         | 
| 550 | 
            +
                                    value="Generate", variant="primary", scale=2
         | 
| 551 | 
            +
                                )
         | 
| 552 | 
            +
                                btn_generate_and_push_to_hub = gr.Button(
         | 
| 553 | 
            +
                                    value="Generate and Push to Hub", variant="primary", scale=2
         | 
| 554 | 
            +
                                )
         | 
| 555 | 
            +
                                btn_push_to_hub = gr.Button(
         | 
| 556 | 
            +
                                    value="Push to Hub", variant="primary", scale=2
         | 
| 557 | 
            +
                                )
         | 
| 558 | 
            +
             | 
| 559 | 
             
                        with gr.Row():
         | 
| 560 | 
             
                            final_dataset = gr.Dataframe(
         | 
| 561 | 
             
                                value=DEFAULT_DATASETS[0],
         | 
|  | |
| 567 | 
             
                        with gr.Row():
         | 
| 568 | 
             
                            success_message = gr.Markdown(visible=False)
         | 
| 569 |  | 
| 570 | 
            +
                def show_success_message_argilla():
         | 
| 571 | 
            +
                    client = get_argilla_client()
         | 
| 572 | 
            +
                    argilla_api_url = client.api_url
         | 
| 573 | 
            +
                    return gr.Markdown(
         | 
| 574 | 
            +
                        value=f"""
         | 
| 575 | 
            +
                        <div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
         | 
| 576 | 
            +
                            <h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
         | 
| 577 | 
            +
                            <p style="margin-top: 0.5em;">
         | 
| 578 | 
            +
                                Your dataset is now available at:
         | 
| 579 | 
            +
                                <a href="{argilla_api_url}" target="_blank" style="color: #1565c0; text-decoration: none;">
         | 
| 580 | 
            +
                                    {argilla_api_url}
         | 
| 581 | 
            +
                                </a>
         | 
| 582 | 
            +
                                <br>Unfamiliar with Argilla? Here are some docs to help you get started:
         | 
| 583 | 
            +
                                <br>• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a>
         | 
| 584 | 
            +
                                <br>• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a>
         | 
| 585 | 
            +
                            </p>
         | 
| 586 | 
            +
                        </div>
         | 
| 587 | 
            +
                        """,
         | 
| 588 | 
            +
                        visible=True,
         | 
| 589 | 
            +
                    )
         | 
| 590 | 
            +
             | 
| 591 | 
            +
                def show_success_message_hub(org_name, repo_name):
         | 
| 592 | 
             
                    return gr.Markdown(
         | 
| 593 | 
             
                        value=f"""
         | 
| 594 | 
             
                        <div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
         | 
|  | |
| 601 | 
             
                                </a>
         | 
| 602 | 
             
                            </p>
         | 
| 603 | 
             
                        </div>
         | 
| 604 | 
            +
                        """,
         | 
| 605 | 
             
                        visible=True,
         | 
| 606 | 
             
                    )
         | 
| 607 |  | 
|  | |
| 630 | 
             
                    inputs=[sample_dataset],
         | 
| 631 | 
             
                    outputs=[final_dataset],
         | 
| 632 | 
             
                )
         | 
| 633 | 
            +
                gr.on(
         | 
| 634 | 
            +
                    triggers=[
         | 
| 635 | 
            +
                        btn_generate_full_dataset.click,
         | 
| 636 | 
            +
                        btn_generate_full_dataset_copy.click,
         | 
| 637 | 
            +
                    ],
         | 
| 638 | 
             
                    fn=hide_success_message,
         | 
| 639 | 
             
                    outputs=[success_message],
         | 
| 640 | 
             
                ).then(
         | 
|  | |
| 644 | 
             
                    show_progress=True,
         | 
| 645 | 
             
                )
         | 
| 646 |  | 
| 647 | 
            +
                btn_generate_and_push_to_argilla.click(
         | 
| 648 | 
            +
                    fn=validate_argilla_dataset_name,
         | 
| 649 | 
            +
                    inputs=[dataset_name, final_dataset, add_to_existing_dataset],
         | 
| 650 | 
            +
                    outputs=[final_dataset],
         | 
| 651 | 
            +
                    show_progress=True,
         | 
| 652 | 
            +
                ).success(
         | 
| 653 | 
            +
                    fn=hide_success_message,
         | 
| 654 | 
            +
                    outputs=[success_message],
         | 
| 655 | 
            +
                ).success(
         | 
| 656 | 
            +
                    fn=generate_dataset,
         | 
| 657 | 
            +
                    inputs=[system_prompt, num_turns, num_rows],
         | 
| 658 | 
            +
                    outputs=[final_dataset],
         | 
| 659 | 
            +
                    show_progress=True,
         | 
| 660 | 
            +
                ).success(
         | 
| 661 | 
            +
                    fn=push_to_argilla,
         | 
| 662 | 
            +
                    inputs=[final_dataset, dataset_name],
         | 
| 663 | 
            +
                    outputs=[final_dataset],
         | 
| 664 | 
            +
                    show_progress=True,
         | 
| 665 | 
            +
                ).success(
         | 
| 666 | 
            +
                    fn=show_success_message_argilla,
         | 
| 667 | 
            +
                    inputs=[],
         | 
| 668 | 
            +
                    outputs=[success_message],
         | 
| 669 | 
            +
                )
         | 
| 670 | 
            +
             | 
| 671 | 
             
                btn_generate_and_push_to_hub.click(
         | 
| 672 | 
             
                    fn=hide_success_message,
         | 
| 673 | 
             
                    outputs=[success_message],
         | 
|  | |
| 687 | 
             
                    outputs=[],
         | 
| 688 | 
             
                    show_progress=True,
         | 
| 689 | 
             
                ).success(
         | 
| 690 | 
            +
                    fn=show_success_message_hub,
         | 
| 691 | 
             
                    inputs=[org_name, repo_name],
         | 
| 692 | 
             
                    outputs=[success_message],
         | 
| 693 | 
             
                )
         | 
|  | |
| 706 | 
             
                    outputs=[],
         | 
| 707 | 
             
                    show_progress=True,
         | 
| 708 | 
             
                ).success(
         | 
| 709 | 
            +
                    fn=show_success_message_hub,
         | 
| 710 | 
             
                    inputs=[org_name, repo_name],
         | 
| 711 | 
             
                    outputs=[success_message],
         | 
| 712 | 
             
                )
         | 
| 713 |  | 
| 714 | 
            +
                btn_push_to_argilla.click(
         | 
| 715 | 
            +
                    fn=hide_success_message,
         | 
| 716 | 
            +
                    outputs=[success_message],
         | 
| 717 | 
            +
                ).success(
         | 
| 718 | 
            +
                    fn=validate_argilla_dataset_name,
         | 
| 719 | 
            +
                    inputs=[dataset_name, final_dataset, add_to_existing_dataset],
         | 
| 720 | 
            +
                    outputs=[final_dataset],
         | 
| 721 | 
            +
                    show_progress=True,
         | 
| 722 | 
            +
                ).success(
         | 
| 723 | 
            +
                    fn=push_to_argilla,
         | 
| 724 | 
            +
                    inputs=[final_dataset, dataset_name],
         | 
| 725 | 
            +
                    outputs=[final_dataset],
         | 
| 726 | 
            +
                    show_progress=True,
         | 
| 727 | 
            +
                ).success(
         | 
| 728 | 
            +
                    fn=show_success_message_argilla,
         | 
| 729 | 
            +
                    inputs=[],
         | 
| 730 | 
            +
                    outputs=[success_message],
         | 
| 731 | 
            +
                )
         | 
| 732 | 
            +
             | 
| 733 | 
             
                system_prompt.change(
         | 
| 734 | 
             
                    fn=generate_pipeline_code,
         | 
| 735 | 
             
                    inputs=[system_prompt, num_turns, num_rows],
         | 
    	
        src/distilabel_dataset_generator/pipelines/embeddings.py
    ADDED
    
    | @@ -0,0 +1,16 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import List
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from sentence_transformers import SentenceTransformer
         | 
| 4 | 
            +
            from sentence_transformers.models import StaticEmbedding
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            # Initialize a StaticEmbedding module
         | 
| 7 | 
            +
            static_embedding = StaticEmbedding.from_model2vec("minishlab/M2V_base_output")
         | 
| 8 | 
            +
            model = SentenceTransformer(modules=[static_embedding])
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
            def get_embeddings(texts: List[str]) -> List[List[float]]:
         | 
| 12 | 
            +
                return [embedding.tolist() for embedding in model.encode(texts)]
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            def get_sentence_embedding_dimensions() -> int:
         | 
| 16 | 
            +
                return model.get_sentence_embedding_dimension()
         | 
    	
        src/distilabel_dataset_generator/pipelines/sft.py
    CHANGED
    
    | @@ -189,7 +189,7 @@ with Pipeline(name="sft") as pipeline: | |
| 189 | 
             
                        tokenizer_id=MODEL,
         | 
| 190 | 
             
                        magpie_pre_query_template="llama3",
         | 
| 191 | 
             
                        generation_kwargs={{
         | 
| 192 | 
            -
                            "temperature": 0. | 
| 193 | 
             
                            "do_sample": True,
         | 
| 194 | 
             
                            "max_new_tokens": 2048,
         | 
| 195 | 
             
                            "stop_sequences": {_STOP_SEQUENCES}
         | 
| @@ -231,7 +231,7 @@ def get_magpie_generator(num_turns, num_rows, system_prompt, is_sample): | |
| 231 | 
             
                            api_key=_get_next_api_key(),
         | 
| 232 | 
             
                            magpie_pre_query_template="llama3",
         | 
| 233 | 
             
                            generation_kwargs={
         | 
| 234 | 
            -
                                "temperature": 0. | 
| 235 | 
             
                                "do_sample": True,
         | 
| 236 | 
             
                                "max_new_tokens": 256 if is_sample else 512,
         | 
| 237 | 
             
                                "stop_sequences": _STOP_SEQUENCES,
         | 
| @@ -250,7 +250,7 @@ def get_magpie_generator(num_turns, num_rows, system_prompt, is_sample): | |
| 250 | 
             
                            api_key=_get_next_api_key(),
         | 
| 251 | 
             
                            magpie_pre_query_template="llama3",
         | 
| 252 | 
             
                            generation_kwargs={
         | 
| 253 | 
            -
                                "temperature": 0. | 
| 254 | 
             
                                "do_sample": True,
         | 
| 255 | 
             
                                "max_new_tokens": 256 if is_sample else 1024,
         | 
| 256 | 
             
                                "stop_sequences": _STOP_SEQUENCES,
         | 
|  | |
| 189 | 
             
                        tokenizer_id=MODEL,
         | 
| 190 | 
             
                        magpie_pre_query_template="llama3",
         | 
| 191 | 
             
                        generation_kwargs={{
         | 
| 192 | 
            +
                            "temperature": 0.9,
         | 
| 193 | 
             
                            "do_sample": True,
         | 
| 194 | 
             
                            "max_new_tokens": 2048,
         | 
| 195 | 
             
                            "stop_sequences": {_STOP_SEQUENCES}
         | 
|  | |
| 231 | 
             
                            api_key=_get_next_api_key(),
         | 
| 232 | 
             
                            magpie_pre_query_template="llama3",
         | 
| 233 | 
             
                            generation_kwargs={
         | 
| 234 | 
            +
                                "temperature": 0.9,
         | 
| 235 | 
             
                                "do_sample": True,
         | 
| 236 | 
             
                                "max_new_tokens": 256 if is_sample else 512,
         | 
| 237 | 
             
                                "stop_sequences": _STOP_SEQUENCES,
         | 
|  | |
| 250 | 
             
                            api_key=_get_next_api_key(),
         | 
| 251 | 
             
                            magpie_pre_query_template="llama3",
         | 
| 252 | 
             
                            generation_kwargs={
         | 
| 253 | 
            +
                                "temperature": 0.9,
         | 
| 254 | 
             
                                "do_sample": True,
         | 
| 255 | 
             
                                "max_new_tokens": 256 if is_sample else 1024,
         | 
| 256 | 
             
                                "stop_sequences": _STOP_SEQUENCES,
         | 
    	
        src/distilabel_dataset_generator/utils.py
    CHANGED
    
    | @@ -1,5 +1,7 @@ | |
| 1 | 
             
            import os
         | 
|  | |
| 2 |  | 
|  | |
| 3 | 
             
            import gradio as gr
         | 
| 4 | 
             
            from gradio.oauth import (
         | 
| 5 | 
             
                OAUTH_CLIENT_ID,
         | 
| @@ -10,6 +12,8 @@ from gradio.oauth import ( | |
| 10 | 
             
            )
         | 
| 11 | 
             
            from huggingface_hub import whoami
         | 
| 12 |  | 
|  | |
|  | |
| 13 | 
             
            HF_TOKENS = [os.getenv("HF_TOKEN")] + [os.getenv(f"HF_TOKEN_{i}") for i in range(1, 10)]
         | 
| 14 | 
             
            HF_TOKENS = [token for token in HF_TOKENS if token]
         | 
| 15 |  | 
| @@ -105,4 +109,16 @@ def get_base_app(): | |
| 105 | 
             
                return app
         | 
| 106 |  | 
| 107 |  | 
| 108 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            import os
         | 
| 2 | 
            +
            from typing import Union
         | 
| 3 |  | 
| 4 | 
            +
            import argilla as rg
         | 
| 5 | 
             
            import gradio as gr
         | 
| 6 | 
             
            from gradio.oauth import (
         | 
| 7 | 
             
                OAUTH_CLIENT_ID,
         | 
|  | |
| 12 | 
             
            )
         | 
| 13 | 
             
            from huggingface_hub import whoami
         | 
| 14 |  | 
| 15 | 
            +
            _LOGGED_OUT_CSS = ".main_ui_logged_out{opacity: 0.3; pointer-events: none}"
         | 
| 16 | 
            +
             | 
| 17 | 
             
            HF_TOKENS = [os.getenv("HF_TOKEN")] + [os.getenv(f"HF_TOKEN_{i}") for i in range(1, 10)]
         | 
| 18 | 
             
            HF_TOKENS = [token for token in HF_TOKENS if token]
         | 
| 19 |  | 
|  | |
| 109 | 
             
                return app
         | 
| 110 |  | 
| 111 |  | 
| 112 | 
            +
            def get_argilla_client() -> Union[rg.Argilla, None]:
         | 
| 113 | 
            +
                try:
         | 
| 114 | 
            +
                    api_url = os.getenv("ARGILLA_API_URL_SDG_REVIEWER")
         | 
| 115 | 
            +
                    api_key = os.getenv("ARGILLA_API_KEY_SDG_REVIEWER")
         | 
| 116 | 
            +
                    if api_url is None or api_key is None:
         | 
| 117 | 
            +
                        api_url = os.getenv("ARGILLA_API_URL")
         | 
| 118 | 
            +
                        api_key = os.getenv("ARGILLA_API_KEY")
         | 
| 119 | 
            +
                    return rg.Argilla(
         | 
| 120 | 
            +
                        api_url=api_url,
         | 
| 121 | 
            +
                        api_key=api_key,
         | 
| 122 | 
            +
                    )
         | 
| 123 | 
            +
                except Exception:
         | 
| 124 | 
            +
                    return None
         | 
 
			
