Optimized ResNet50 model loading
Browse files
app.py
CHANGED
@@ -3,12 +3,53 @@ import glob
|
|
3 |
import time
|
4 |
import random
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def classify_image(image):
|
7 |
# Wait for a random interval between 0.5 and 1.5 seconds to look useful
|
8 |
-
time.sleep(random.uniform(0.5, 1.5))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
12 |
|
13 |
# Dynamically create the list of example images
|
14 |
example_files = sorted(glob.glob("examples/*.png"))
|
|
|
3 |
import time
|
4 |
import random
|
5 |
|
6 |
+
# Import necessary libraries
|
7 |
+
from torchvision import models, transforms
|
8 |
+
from PIL import Image
|
9 |
+
import torch
|
10 |
+
|
11 |
+
# Load pre-trained ResNet model once
|
12 |
+
model = models.resnet50(pretrained=True)
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
# Define image transformations
|
16 |
+
transform = transforms.Compose([
|
17 |
+
transforms.Resize(256),
|
18 |
+
transforms.CenterCrop(224),
|
19 |
+
transforms.ToTensor(),
|
20 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
21 |
+
])
|
22 |
+
|
23 |
+
# Load class labels
|
24 |
+
with open('imagenet_classes.txt') as f:
|
25 |
+
labels = [line.strip() for line in f.readlines()]
|
26 |
+
|
27 |
def classify_image(image):
|
28 |
# Wait for a random interval between 0.5 and 1.5 seconds to look useful
|
29 |
+
# time.sleep(random.uniform(0.5, 1.5))
|
30 |
+
print("Classifying image...")
|
31 |
+
|
32 |
+
# Preprocess the image
|
33 |
+
img = Image.fromarray(image).convert('RGB')
|
34 |
+
img_t = transform(img)
|
35 |
+
batch_t = torch.unsqueeze(img_t, 0)
|
36 |
+
|
37 |
+
# Make prediction
|
38 |
+
with torch.no_grad():
|
39 |
+
output = model(batch_t)
|
40 |
+
|
41 |
+
# Get the predicted class
|
42 |
+
_, predicted = torch.max(output, 1)
|
43 |
+
classification = labels[predicted.item()]
|
44 |
+
|
45 |
+
# Check if the predicted class is a bird
|
46 |
+
bird_classes = ['bird', 'fowl', 'hen', 'cock', 'rooster', 'peacock', 'parrot', 'eagle', 'owl', 'penguin']
|
47 |
+
is_bird = any(bird_class in classification.lower() for bird_class in bird_classes)
|
48 |
|
49 |
+
if is_bird:
|
50 |
+
return f"This is a bird! Specifically, it looks like a {classification}."
|
51 |
+
else:
|
52 |
+
return f"This is not a bird. It appears to be a {classification}."
|
53 |
|
54 |
# Dynamically create the list of example images
|
55 |
example_files = sorted(glob.glob("examples/*.png"))
|