A19grey commited on
Commit
6671403
·
1 Parent(s): 568c509

Sort the Example files alphabetically so in right order fix a bug missing import

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -1,5 +1,7 @@
1
  import gradio as gr
2
  import glob
 
 
3
 
4
  def classify_image(image):
5
  # Wait for a random interval between 0.5 and 1.5 seconds to look useful
@@ -9,7 +11,7 @@ def classify_image(image):
9
  return "Not a bird"
10
 
11
  # Dynamically create the list of example images
12
- example_files = glob.glob("examples/*.png")
13
  examples = [[file] for file in example_files]
14
 
15
  # Create the Gradio interface
@@ -18,8 +20,8 @@ demo = gr.Interface(
18
  inputs="image", # The input type is an image
19
  outputs="text", # The output type is text
20
  examples=examples # Add example images
21
- title="Is this a picture of a bird?", # Title of the app
22
- description="Uses the latest in machine learning LLM Diffusion models to analyzes every pixel (twice) and to determine conclusively if it is a picture of a bird" # Description of the app
23
  )
24
  # Launch the app
25
  demo.launch()
 
1
  import gradio as gr
2
  import glob
3
+ import time
4
+ import random
5
 
6
  def classify_image(image):
7
  # Wait for a random interval between 0.5 and 1.5 seconds to look useful
 
11
  return "Not a bird"
12
 
13
  # Dynamically create the list of example images
14
+ example_files = sorted(glob.glob("examples/*.png"))
15
  examples = [[file] for file in example_files]
16
 
17
  # Create the Gradio interface
 
20
  inputs="image", # The input type is an image
21
  outputs="text", # The output type is text
22
  examples=examples # Add example images
23
+ ,title="Is this a picture of a bird?" # Title of the app
24
+ ,description="Uses the latest in machine learning LLM Diffusion models to analyzes every pixel (twice) and to determine conclusively if it is a picture of a bird" # Description of the app
25
  )
26
  # Launch the app
27
  demo.launch()