test_MIIA / app.py
AC-Angelo93's picture
Update app.py
c256c10 verified
raw
history blame
3.71 kB
import os
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# If you have a HF token in the Space secrets, uncomment below:
# os.environ["HUGGINGFACE_HUB_TOKEN"] = os.getenv("HF_TOKEN", "")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Load tokenizer + model with trust_remote_code, and let Transformers shard/auto‐offload if needed.
tokenizer = AutoTokenizer.from_pretrained(
"Fastweb/FastwebMIIA-7B",
use_fast=True,
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
"Fastweb/FastwebMIIA-7B",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto", # let HF accelerate/device_map place layers automatically
trust_remote_code=True
)
model.eval() # set to eval mode
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
"""
Build a list of messages in the format the model expects, apply any chat template,
tokenize, generate, and decode. Wrap inference in torch.no_grad() to save memory.
"""
# 1) Build the “chat” message list
messages = []
if system_message:
messages.append({"role": "system", "content": system_message})
for user_msg, bot_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if bot_msg:
messages.append({"role": "assistant", "content": bot_msg})
messages.append({"role": "user", "content": message})
# 2) Format via the model’s chat template
# Note: many community‐models define `apply_chat_template`.
input_text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(input_text, return_tensors="pt")
input_ids = inputs.input_ids.to(DEVICE)
attention_mask = inputs.attention_mask.to(DEVICE)
# 3) Inference under no_grad
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
)
# 4) Skip the prompt tokens and decode only the newly generated tokens
generated_tokens = outputs[0][input_ids.shape[1]:]
response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
return response
# Build a Gradio ChatInterface; sliders/textbox for system‐prompt and sampling‐params
chat_interface = gr.ChatInterface(
fn=respond,
title="FastwebMIIA‐7B Chatbot",
description="A simple chat demo using Fastweb/FastwebMIIA‐7B",
# “additional_inputs” become available above the conversation window
additional_inputs=[
gr.Textbox(
value="You are a helpful assistant.",
label="System message (role: system)"
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-p (nucleus sampling)"
),
],
# You can tweak CSS or theme here if you like; omitted for brevity.
)
if __name__ == "__main__":
# On HF Spaces, you often want `share=False` (default). If you need to expose a public URL, set True.
chat_interface.launch(server_name="0.0.0.0", server_port=7860)