Spaces:
Sleeping
Sleeping
Karthikeyan
commited on
Commit
·
f5ad618
1
Parent(s):
b3f3db2
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import openai
|
3 |
+
import os
|
4 |
+
# Initialize the OpenAI API client with your actual API key
|
5 |
+
|
6 |
+
class Classifier:
|
7 |
+
def __init__(self):
|
8 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
9 |
+
def classify_text(self,text):
|
10 |
+
# Specify the desired model and additional options
|
11 |
+
response = openai.Completion.create(
|
12 |
+
engine="text-davinci-003",
|
13 |
+
prompt=f"Classify the following text as 'True' if related to Mental healthcare issue or 'False' if not related:\n{text}\n",
|
14 |
+
temperature=0,
|
15 |
+
max_tokens=1, # We only need a single token as the classification result
|
16 |
+
n=1,
|
17 |
+
stop=None,
|
18 |
+
)
|
19 |
+
|
20 |
+
# Extract and return the generated classification result
|
21 |
+
generated_text = response.choices[0].text.strip()
|
22 |
+
return generated_text
|
23 |
+
def clear_func(self):
|
24 |
+
return " "," "
|
25 |
+
def gradio_interface(self):
|
26 |
+
with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as demo:
|
27 |
+
gr.HTML("""<center><h1>Mental healthcare</h1></center>""")
|
28 |
+
with gr.Column(elem_id="col-container"):
|
29 |
+
with gr.Row(elem_id="row-flex"):
|
30 |
+
with gr.Column(scale=0.90, min_width=160):
|
31 |
+
question =gr.Textbox(
|
32 |
+
show_label=True,
|
33 |
+
label="Question",
|
34 |
+
).style(container=True)
|
35 |
+
with gr.Column(scale=0.10, min_width=160):
|
36 |
+
result =gr.Textbox(
|
37 |
+
show_label=True,
|
38 |
+
label="Result",
|
39 |
+
).style(container=True)
|
40 |
+
with gr.Row(elem_id="row-flex"):
|
41 |
+
with gr.Column(scale=0.50, min_width=0):
|
42 |
+
submit=gr.Button(value="Submit")
|
43 |
+
with gr.Column(scale=0.50):
|
44 |
+
emptyBtn = gr.Button("🧹 Clear",)
|
45 |
+
|
46 |
+
submit.click(self.classify_text,question,result)
|
47 |
+
emptyBtn.click(self.clear_func,[],[question,result])
|
48 |
+
|
49 |
+
demo.queue().launch(debug=True)
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
classifier = Classifier()
|
53 |
+
classifier.gradio_interface()
|