Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -45,7 +45,6 @@ def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
|
|
45 |
temp3["role"] = "user"
|
46 |
temp3["content"] = inputs
|
47 |
messages.append(temp3)
|
48 |
-
#messages
|
49 |
payload = {
|
50 |
"model": "gpt-3.5-turbo",
|
51 |
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
|
@@ -61,28 +60,19 @@ def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
|
|
61 |
# 4. POST it to OPENAI API
|
62 |
history.append(inputs)
|
63 |
print(f"payload is - {payload}")
|
64 |
-
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
|
65 |
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
|
66 |
-
#response = requests.post(API_URL, headers=headers, json=payload, stream=True)
|
67 |
token_counter = 0
|
68 |
partial_words = ""
|
69 |
|
70 |
# 5. Iterate through response lines and structure readable response
|
71 |
-
# TODO - make this parse out markdown so we can have similar interface
|
72 |
counter=0
|
73 |
for chunk in response.iter_lines():
|
74 |
-
#Skipping first chunk
|
75 |
if counter == 0:
|
76 |
counter+=1
|
77 |
continue
|
78 |
-
#counter+=1
|
79 |
-
# check whether each line is non-empty
|
80 |
if chunk.decode() :
|
81 |
chunk = chunk.decode()
|
82 |
-
# decode each line as response data is in bytes
|
83 |
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
|
84 |
-
#if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
|
85 |
-
# break
|
86 |
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
|
87 |
if token_counter == 0:
|
88 |
history.append(" " + partial_words)
|
@@ -90,15 +80,72 @@ def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
|
|
90 |
history[-1] = partial_words
|
91 |
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
|
92 |
token_counter+=1
|
93 |
-
yield chat, history, chat_counter
|
94 |
|
95 |
|
96 |
def reset_textbox():
|
97 |
return gr.update(value='')
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
title = """<h1 align="center">Memory Chat Story Generator ChatGPT</h1>"""
|
100 |
description = """
|
101 |
-
|
102 |
## ChatGPT Datasets π
|
103 |
- WebText
|
104 |
- Common Crawl
|
@@ -106,7 +153,6 @@ description = """
|
|
106 |
- English Wikipedia
|
107 |
- Toronto Books Corpus
|
108 |
- OpenWebText
|
109 |
-
|
110 |
## ChatGPT Datasets - Details π
|
111 |
- **WebText:** A dataset of web pages crawled from domains on the Alexa top 5,000 list. This dataset was used to pretrain GPT-2.
|
112 |
- [WebText: A Large-Scale Unsupervised Text Corpus by Radford et al.](https://paperswithcode.com/dataset/webtext)
|
@@ -119,33 +165,45 @@ description = """
|
|
119 |
- **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto.
|
120 |
- [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze.
|
121 |
- **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3.
|
122 |
-
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al.
|
123 |
-
|
124 |
"""
|
125 |
|
126 |
# 6. Use Gradio to pull it all together
|
127 |
-
with gr.Blocks(css = """#col_container {width:
|
128 |
-
#chatbot {height: 520px; overflow: auto;}""") as demo:
|
129 |
-
|
130 |
-
|
131 |
gr.HTML(title)
|
132 |
-
|
133 |
-
|
134 |
with gr.Column(elem_id = "col_container"):
|
135 |
-
|
136 |
-
|
137 |
-
state = gr.State([])
|
138 |
b1 = gr.Button()
|
139 |
-
|
140 |
with gr.Accordion("Parameters", open=False):
|
141 |
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
|
142 |
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
|
143 |
-
chat_counter = gr.Number(value=0, visible=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
|
146 |
-
|
|
|
147 |
b1.click(reset_textbox, [], [inputs])
|
148 |
inputs.submit(reset_textbox, [], [inputs])
|
149 |
-
|
150 |
gr.Markdown(description)
|
151 |
-
|
|
|
|
45 |
temp3["role"] = "user"
|
46 |
temp3["content"] = inputs
|
47 |
messages.append(temp3)
|
|
|
48 |
payload = {
|
49 |
"model": "gpt-3.5-turbo",
|
50 |
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
|
|
|
60 |
# 4. POST it to OPENAI API
|
61 |
history.append(inputs)
|
62 |
print(f"payload is - {payload}")
|
|
|
63 |
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
|
|
|
64 |
token_counter = 0
|
65 |
partial_words = ""
|
66 |
|
67 |
# 5. Iterate through response lines and structure readable response
|
|
|
68 |
counter=0
|
69 |
for chunk in response.iter_lines():
|
|
|
70 |
if counter == 0:
|
71 |
counter+=1
|
72 |
continue
|
|
|
|
|
73 |
if chunk.decode() :
|
74 |
chunk = chunk.decode()
|
|
|
75 |
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
|
|
|
|
|
76 |
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
|
77 |
if token_counter == 0:
|
78 |
history.append(" " + partial_words)
|
|
|
80 |
history[-1] = partial_words
|
81 |
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
|
82 |
token_counter+=1
|
83 |
+
yield chat, history, chat_counter
|
84 |
|
85 |
|
86 |
def reset_textbox():
|
87 |
return gr.update(value='')
|
88 |
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
# Episodic and Semantic IO
|
93 |
+
def list_files(file_path):
|
94 |
+
import os
|
95 |
+
icon_csv = "π "
|
96 |
+
icon_txt = "π "
|
97 |
+
current_directory = os.getcwd()
|
98 |
+
file_list = []
|
99 |
+
for filename in os.listdir(current_directory):
|
100 |
+
if filename.endswith(".csv"):
|
101 |
+
file_list.append(icon_csv + filename)
|
102 |
+
elif filename.endswith(".txt"):
|
103 |
+
file_list.append(icon_txt + filename)
|
104 |
+
if file_list:
|
105 |
+
return "\n".join(file_list)
|
106 |
+
else:
|
107 |
+
return "No .csv or .txt files found in the current directory."
|
108 |
+
|
109 |
+
# Function to read a file
|
110 |
+
def read_file(file_path):
|
111 |
+
try:
|
112 |
+
with open(file_path, "r") as file:
|
113 |
+
contents = file.read()
|
114 |
+
return f"{contents}"
|
115 |
+
#return f"Contents of {file_path}:\n{contents}"
|
116 |
+
except FileNotFoundError:
|
117 |
+
return "File not found."
|
118 |
+
|
119 |
+
# Function to delete a file
|
120 |
+
def delete_file(file_path):
|
121 |
+
try:
|
122 |
+
import os
|
123 |
+
os.remove(file_path)
|
124 |
+
return f"{file_path} has been deleted."
|
125 |
+
except FileNotFoundError:
|
126 |
+
return "File not found."
|
127 |
+
|
128 |
+
# Function to write to a file
|
129 |
+
def write_file(file_path, content):
|
130 |
+
try:
|
131 |
+
with open(file_path, "w") as file:
|
132 |
+
file.write(content)
|
133 |
+
return f"Successfully written to {file_path}."
|
134 |
+
except:
|
135 |
+
return "Error occurred while writing to file."
|
136 |
+
|
137 |
+
# Function to append to a file
|
138 |
+
def append_file(file_path, content):
|
139 |
+
try:
|
140 |
+
with open(file_path, "a") as file:
|
141 |
+
file.write(content)
|
142 |
+
return f"Successfully appended to {file_path}."
|
143 |
+
except:
|
144 |
+
return "Error occurred while appending to file."
|
145 |
+
|
146 |
+
|
147 |
title = """<h1 align="center">Memory Chat Story Generator ChatGPT</h1>"""
|
148 |
description = """
|
|
|
149 |
## ChatGPT Datasets π
|
150 |
- WebText
|
151 |
- Common Crawl
|
|
|
153 |
- English Wikipedia
|
154 |
- Toronto Books Corpus
|
155 |
- OpenWebText
|
|
|
156 |
## ChatGPT Datasets - Details π
|
157 |
- **WebText:** A dataset of web pages crawled from domains on the Alexa top 5,000 list. This dataset was used to pretrain GPT-2.
|
158 |
- [WebText: A Large-Scale Unsupervised Text Corpus by Radford et al.](https://paperswithcode.com/dataset/webtext)
|
|
|
165 |
- **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto.
|
166 |
- [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze.
|
167 |
- **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3.
|
168 |
+
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al.
|
|
|
169 |
"""
|
170 |
|
171 |
# 6. Use Gradio to pull it all together
|
172 |
+
with gr.Blocks(css = """#col_container {width: 1400px; margin-left: auto; margin-right: auto;} #chatbot {height: 600px; overflow: auto;}""") as demo:
|
|
|
|
|
|
|
173 |
gr.HTML(title)
|
|
|
|
|
174 |
with gr.Column(elem_id = "col_container"):
|
175 |
+
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter")
|
176 |
+
chatbot = gr.Chatbot(elem_id='chatbot')
|
177 |
+
state = gr.State([])
|
178 |
b1 = gr.Button()
|
|
|
179 |
with gr.Accordion("Parameters", open=False):
|
180 |
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
|
181 |
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
|
182 |
+
chat_counter = gr.Number(value=0, visible=True, precision=0)
|
183 |
+
|
184 |
+
|
185 |
+
# Episodic/Semantic IO
|
186 |
+
fileName = gr.Textbox(label="Filename")
|
187 |
+
fileContent = gr.TextArea(label="File Content")
|
188 |
+
completedMessage = gr.Textbox(label="Completed")
|
189 |
+
label = gr.Label()
|
190 |
+
with gr.Row():
|
191 |
+
listFiles = gr.Button("π List File(s)")
|
192 |
+
readFile = gr.Button("π Read File")
|
193 |
+
saveFile = gr.Button("πΎ Save File")
|
194 |
+
deleteFile = gr.Button("ποΈ Delete File")
|
195 |
+
appendFile = gr.Button("β Append File")
|
196 |
+
listFiles.click(list_files, inputs=fileName, outputs=fileContent)
|
197 |
+
readFile.click(read_file, inputs=fileName, outputs=fileContent)
|
198 |
+
saveFile.click(write_file, inputs=[fileName, fileContent], outputs=completedMessage)
|
199 |
+
deleteFile.click(delete_file, inputs=fileName, outputs=completedMessage)
|
200 |
+
appendFile.click(append_file, inputs=[fileName, fileContent], outputs=completedMessage )
|
201 |
|
202 |
+
|
203 |
+
inputs.submit(predict, [inputs, top_p, temperature,chat_counter, chatbot, state], [chatbot, state, chat_counter])
|
204 |
+
b1.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter])
|
205 |
b1.click(reset_textbox, [], [inputs])
|
206 |
inputs.submit(reset_textbox, [], [inputs])
|
|
|
207 |
gr.Markdown(description)
|
208 |
+
|
209 |
+
demo.queue().launch(debug=True)
|