Spaces:
Sleeping
Sleeping
File size: 12,971 Bytes
e8552c6 5f41070 e8552c6 03a66dc 60ad7ee 0f5cce3 60ad7ee 0f5cce3 60ad7ee 0f5cce3 60ad7ee 0f5cce3 60ad7ee 0f5cce3 60ad7ee 03a66dc 0f5cce3 e8552c6 6550c45 e8552c6 6550c45 dba1b37 6550c45 e8552c6 6550c45 e8552c6 6550c45 e8552c6 5c8c4b0 e8552c6 5c8c4b0 e8552c6 5c8c4b0 e8552c6 3b1fa04 e8552c6 3b1fa04 e8552c6 6550c45 3b1fa04 6550c45 5c8c4b0 6550c45 5c8c4b0 6550c45 5c8c4b0 6550c45 5c8c4b0 6550c45 e8552c6 6550c45 e8552c6 3b1fa04 6550c45 e8552c6 6550c45 ddee870 43a0973 6550c45 258d48a 6550c45 258d48a 8605607 6550c45 258d48a 6550c45 258d48a 6550c45 258d48a 8605607 258d48a 6550c45 258d48a 6550c45 8605607 258d48a 6550c45 258d48a 8605607 258d48a e8552c6 43a0973 6550c45 e8552c6 6550c45 8605607 6550c45 03a66dc 6550c45 e8552c6 03a66dc 6550c45 e8552c6 6550c45 e8552c6 aacbe29 e8552c6 6550c45 e8552c6 6550c45 e8552c6 3b1fa04 e8552c6 6550c45 e8552c6 6550c45 448110d e8552c6 2f16432 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import json
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, BitsAndBytesConfig
import torch
import os
import gradio_client.utils as client_utils
import sys
# ===============================
# Recursion Handling Fix
# ===============================
def _patched_json_schema_to_python_type(schema, defs=None, depth=0):
# Safety check to prevent infinite recursion
if depth > 100:
return "Any"
# Handle boolean cases
if isinstance(schema, bool):
return "Any" if schema else "None"
# Call the original function with increased depth
try:
return client_utils._json_schema_to_python_type(schema, defs)
except RecursionError:
return "Any"
# Modify the utilities to use the patched function
client_utils._json_schema_to_python_type = _patched_json_schema_to_python_type
# Increase recursion limit as a backup
sys.setrecursionlimit(10000)
# Set up device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hf_token = os.environ["HF_TOKEN"]
# ===============================
# Load Question Generation Model
# ===============================
model_path = "AI-Mock-Interviewer/T5"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
# Move model to the appropriate device
model.to(device)
# ===============================
# Load Evaluation Model (QwQ)
# ===============================
bnb_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True,
)
qwq_model_id = "unsloth/QwQ-32B-unsloth-bnb-4bit"
qwq_tokenizer = AutoTokenizer.from_pretrained(qwq_model_id, trust_remote_code=True)
qwq_model = AutoModelForCausalLM.from_pretrained(
qwq_model_id,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
# ===============================
# Prompts and Scoring
# ===============================
system_prompt = """
You are conducting a mock technical interview. The candidate's experience level can be entry-level, mid-level, or senior-level. Generate questions and follow-up questions based on the domain and the candidate's experience level. Consider these aspects:
1. The question should be relevant to the domain and appropriate for the candidate's experience level.
2. For follow-up questions, analyze the candidate's last response and ask questions that probe deeper into their understanding.
3. Avoid repeating previously asked questions or subtopics.
4. Keep questions clear and concise, targeting core technical and communication skills.
"""
subtopic_keywords = {
"data analysis": ["data cleaning", "missing data", "EDA", "visualization"],
"machine learning": ["supervised learning", "overfitting", "hyperparameter tuning"],
"software engineering": ["code optimization", "design patterns", "database design"],
}
rating_scores = {"Good": 3, "Average": 2, "Needs Improvement": 1}
score_categories = [(90, "Excellent"), (75, "Very Good"), (60, "Good"), (45, "Average"), (0, "Needs Improvement")]
# ===============================
# Helper Functions
# ===============================
def identify_subtopic(question, domain):
domain = domain.lower()
if domain in subtopic_keywords:
for subtopic in subtopic_keywords[domain]:
if subtopic in question.lower():
return subtopic
return None
def generate_question(prompt, domain, state=None):
full_prompt = system_prompt + "\n" + prompt
# Explicitly set padding side and add pad token
tokenizer.padding_side = "left"
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Tokenize with explicit padding and attention mask
inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True).to(device)
outputs = model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=50,
no_repeat_ngram_size=2,
top_k=30,
top_p=0.9,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
)
question = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
if not question.endswith("?"):
question += "?"
subtopic = identify_subtopic(question, domain)
if state is not None:
if (question not in state["asked_questions"] and
(subtopic is None or subtopic not in state["asked_subtopics"])):
state["asked_questions"].append(question)
if subtopic:
state["asked_subtopics"].append(subtopic)
return question
return question
def evaluate_response(response, question):
# Explicitly set padding side and add pad token
qwq_tokenizer.padding_side = "left"
if qwq_tokenizer.pad_token is None:
qwq_tokenizer.pad_token = qwq_tokenizer.eos_token
eval_prompt = (
"Evaluate the following candidate response to an interview question.\n\n"
f"**Question:** {question}\n"
f"**Candidate's Response:** {response}\n\n"
"Provide a rating as: 'Good', 'Average', or 'Needs Improvement'.\n"
"Also, provide a brief suggestion for improvement. Format:\n"
"Rating: <Rating>\nSuggestion: <Suggestion>"
)
# Tokenize with explicit padding and attention mask
inputs = qwq_tokenizer(eval_prompt, return_tensors="pt", padding=True, truncation=True).to(qwq_model.device)
outputs = qwq_model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=100,
top_k=30,
top_p=0.9,
temperature=0.7,
do_sample=True,
pad_token_id=qwq_tokenizer.pad_token_id,
)
evaluation = qwq_tokenizer.decode(outputs[0], skip_special_tokens=True)
rating, suggestion = "Unknown", "No suggestion available."
for line in evaluation.splitlines():
if "Rating:" in line:
rating = line.split("Rating:")[1].strip()
if "Suggestion:" in line:
suggestion = line.split("Suggestion:")[1].strip()
return rating, suggestion
def reset_state(name, domain, company, level):
return {
"name": name,
"domain": domain,
"company": company,
"level": level,
"asked_questions": [],
"asked_subtopics": [],
"conversation": [],
"evaluations": [],
"interview_active": True
}
def start_interview(name, domain, company, level):
try:
# Print all input parameters
print(f"Start Interview Called:")
print(f"Name: {name}")
print(f"Domain: {domain}")
print(f"Company: {company}")
print(f"Level: {level}")
# Validate inputs
if not name or not domain:
return [{"role": "System", "content": "Please provide a name and domain"}], None
# Create initial state
state = reset_state(name, domain, company, level)
print("State reset successfully")
# Prepare prompt for question generation
prompt = f"Domain: {domain}. Candidate experience level: {level}. Generate the first question:"
print(f"Prompt for question generation: {prompt}")
# Verify model is ready
print("Model device:", model.device)
print("Model ready:", model is not None)
# Generate first question
try:
question = generate_question(prompt, domain, state)
print(f"Generated Question: {question}")
except Exception as q_error:
print(f"Question Generation Error: {q_error}")
question = f"Error generating question: {q_error}"
# Append question to conversation
state["conversation"].append({"role": "Interviewer", "content": question})
return state["conversation"], state
except Exception as e:
print(f"CRITICAL ERROR in start_interview: {e}")
import traceback
traceback.print_exc()
return [{"role": "System", "content": f"Critical error: {e}"}], None
print("Conversation returned to UI:", state["conversation"])
def submit_response(response, state):
print("Submit Response Called")
print("Response:", response)
print("Current State:", state)
# Ensure state is not None and interview is active
if state is None:
print("State is None, resetting")
state = reset_state("", "", "", "Entry-Level")
if not state.get("interview_active", False):
print("Interview not active")
return state["conversation"], state
# Handle empty response
if not response or not response.strip():
print("Empty response")
state["conversation"].append({"role": "System", "content": "⚠️ Please answer the question before proceeding."})
return state["conversation"], state
# Exit condition
if response.strip().lower() == "exit":
print("Exit requested")
return end_interview(state)
# Add candidate response to conversation
state["conversation"].append({"role": "Candidate", "content": response})
# Find the last interviewer question
last_q = next((msg["content"] for msg in reversed(state["conversation"]) if msg["role"] == "Interviewer"), "")
# Evaluate response
print("Evaluating response to question:", last_q)
rating, suggestion = evaluate_response(response, last_q)
# Add evaluation to conversation and state
state["evaluations"].append({
"question": last_q,
"response": response,
"rating": rating,
"suggestion": suggestion
})
state["conversation"].append({"role": "Evaluator", "content": f"Rating: {rating}\nSuggestion: {suggestion}"})
# Generate follow-up question
prompt = f"Domain: {state['domain']}. Candidate's last response: {response}. Generate a follow-up question:"
follow_up = generate_question(prompt, state["domain"], state)
print("Generated Follow-up Question:", follow_up)
state["conversation"].append({"role": "Interviewer", "content": follow_up})
return state["conversation"], state
print("Conversation returned to UI:", state["conversation"])
def end_interview(state):
state["interview_active"] = False
total = sum(rating_scores.get(ev["rating"], 0) for ev in state["evaluations"])
max_total = len(state["evaluations"]) * 3
percent = (total / max_total * 100) if max_total > 0 else 0
category = next(label for threshold, label in score_categories if percent >= threshold)
summary = {
"name": state["name"],
"domain": state["domain"],
"level": state["level"],
"company": state["company"],
"score": f"{total}/{max_total}",
"percentage": round(percent, 2),
"category": category,
"evaluations": state["evaluations"]
}
filename = f"sessions/{state['name'].replace(' ', '_').lower()}_session.json"
os.makedirs("sessions", exist_ok=True)
with open(filename, "w") as f:
json.dump(summary, f, indent=4)
state["conversation"].append({"role": "System", "content": f"✅ Interview ended. \nFinal Score: {summary['score']} ({summary['category']})"})
return state["conversation"], state
def clear_state():
return [], reset_state("", "", "", "Entry-Level")
# ===============================
# Gradio UI
# ===============================
with gr.Blocks() as demo:
gr.Markdown("# 🧠 AI Mock Interview with Evaluation")
with gr.Row():
name_input = gr.Textbox(label="Your Name")
domain_input = gr.Textbox(label="Domain", placeholder="e.g. Software Engineering")
company_input = gr.Textbox(label="Company (Optional)", placeholder="e.g. Google")
level_input = gr.Dropdown(
label="Experience Level",
choices=["Entry-Level", "Mid-Level", "Senior-Level"],
value="Entry-Level"
)
start_button = gr.Button("Start Interview")
chatbot = gr.Chatbot(label="Interview Conversation", height=450, type="messages")
with gr.Row():
response_input = gr.Textbox(label="Your Response (type 'exit' to quit)", lines=2)
submit_button = gr.Button("Submit")
exit_button = gr.Button("Exit Interview")
clear_button = gr.Button("Clear Session")
# Initialize state with proper structure
state = gr.State(value=reset_state("", "", "", "Entry-Level"))
start_button.click(start_interview,
inputs=[name_input, domain_input, company_input, level_input],
outputs=[chatbot, state])
submit_button.click(submit_response, inputs=[response_input, state], outputs=[chatbot, state]).then(lambda: "", None, response_input)
exit_button.click(end_interview, inputs=state, outputs=[chatbot, state])
clear_button.click(clear_state, outputs=[chatbot, state])
demo.launch() |