Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import fvcore.nn.weight_init as weight_init | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from detectron2.config import CfgNode | |
| from detectron2.layers import Conv2d | |
| from .registry import ROI_DENSEPOSE_HEAD_REGISTRY | |
| class DensePoseDeepLabHead(nn.Module): | |
| """ | |
| DensePose head using DeepLabV3 model from | |
| "Rethinking Atrous Convolution for Semantic Image Segmentation" | |
| <https://arxiv.org/abs/1706.05587>. | |
| """ | |
| def __init__(self, cfg: CfgNode, input_channels: int): | |
| super(DensePoseDeepLabHead, self).__init__() | |
| # fmt: off | |
| hidden_dim = cfg.MODEL.ROI_DENSEPOSE_HEAD.CONV_HEAD_DIM | |
| kernel_size = cfg.MODEL.ROI_DENSEPOSE_HEAD.CONV_HEAD_KERNEL | |
| norm = cfg.MODEL.ROI_DENSEPOSE_HEAD.DEEPLAB.NORM | |
| self.n_stacked_convs = cfg.MODEL.ROI_DENSEPOSE_HEAD.NUM_STACKED_CONVS | |
| self.use_nonlocal = cfg.MODEL.ROI_DENSEPOSE_HEAD.DEEPLAB.NONLOCAL_ON | |
| # fmt: on | |
| pad_size = kernel_size // 2 | |
| n_channels = input_channels | |
| self.ASPP = ASPP(input_channels, [6, 12, 56], n_channels) # 6, 12, 56 | |
| self.add_module("ASPP", self.ASPP) | |
| if self.use_nonlocal: | |
| self.NLBlock = NONLocalBlock2D(input_channels, bn_layer=True) | |
| self.add_module("NLBlock", self.NLBlock) | |
| # weight_init.c2_msra_fill(self.ASPP) | |
| for i in range(self.n_stacked_convs): | |
| norm_module = nn.GroupNorm(32, hidden_dim) if norm == "GN" else None | |
| layer = Conv2d( | |
| n_channels, | |
| hidden_dim, | |
| kernel_size, | |
| stride=1, | |
| padding=pad_size, | |
| bias=not norm, | |
| norm=norm_module, | |
| ) | |
| weight_init.c2_msra_fill(layer) | |
| n_channels = hidden_dim | |
| layer_name = self._get_layer_name(i) | |
| self.add_module(layer_name, layer) | |
| self.n_out_channels = hidden_dim | |
| # initialize_module_params(self) | |
| def forward(self, features): | |
| x0 = features | |
| x = self.ASPP(x0) | |
| if self.use_nonlocal: | |
| x = self.NLBlock(x) | |
| output = x | |
| for i in range(self.n_stacked_convs): | |
| layer_name = self._get_layer_name(i) | |
| x = getattr(self, layer_name)(x) | |
| x = F.relu(x) | |
| output = x | |
| return output | |
| def _get_layer_name(self, i: int): | |
| layer_name = "body_conv_fcn{}".format(i + 1) | |
| return layer_name | |
| # Copied from | |
| # https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/deeplabv3.py | |
| # See https://arxiv.org/pdf/1706.05587.pdf for details | |
| class ASPPConv(nn.Sequential): | |
| def __init__(self, in_channels, out_channels, dilation): | |
| modules = [ | |
| nn.Conv2d( | |
| in_channels, out_channels, 3, padding=dilation, dilation=dilation, bias=False | |
| ), | |
| nn.GroupNorm(32, out_channels), | |
| nn.ReLU(), | |
| ] | |
| super(ASPPConv, self).__init__(*modules) | |
| class ASPPPooling(nn.Sequential): | |
| def __init__(self, in_channels, out_channels): | |
| super(ASPPPooling, self).__init__( | |
| nn.AdaptiveAvgPool2d(1), | |
| nn.Conv2d(in_channels, out_channels, 1, bias=False), | |
| nn.GroupNorm(32, out_channels), | |
| nn.ReLU(), | |
| ) | |
| def forward(self, x): | |
| size = x.shape[-2:] | |
| x = super(ASPPPooling, self).forward(x) | |
| return F.interpolate(x, size=size, mode="bilinear", align_corners=False) | |
| class ASPP(nn.Module): | |
| def __init__(self, in_channels, atrous_rates, out_channels): | |
| super(ASPP, self).__init__() | |
| modules = [] | |
| modules.append( | |
| nn.Sequential( | |
| nn.Conv2d(in_channels, out_channels, 1, bias=False), | |
| nn.GroupNorm(32, out_channels), | |
| nn.ReLU(), | |
| ) | |
| ) | |
| rate1, rate2, rate3 = tuple(atrous_rates) | |
| modules.append(ASPPConv(in_channels, out_channels, rate1)) | |
| modules.append(ASPPConv(in_channels, out_channels, rate2)) | |
| modules.append(ASPPConv(in_channels, out_channels, rate3)) | |
| modules.append(ASPPPooling(in_channels, out_channels)) | |
| self.convs = nn.ModuleList(modules) | |
| self.project = nn.Sequential( | |
| nn.Conv2d(5 * out_channels, out_channels, 1, bias=False), | |
| # nn.BatchNorm2d(out_channels), | |
| nn.ReLU() | |
| # nn.Dropout(0.5) | |
| ) | |
| def forward(self, x): | |
| res = [] | |
| for conv in self.convs: | |
| res.append(conv(x)) | |
| res = torch.cat(res, dim=1) | |
| return self.project(res) | |
| # copied from | |
| # https://github.com/AlexHex7/Non-local_pytorch/blob/master/lib/non_local_embedded_gaussian.py | |
| # See https://arxiv.org/abs/1711.07971 for details | |
| class _NonLocalBlockND(nn.Module): | |
| def __init__( | |
| self, in_channels, inter_channels=None, dimension=3, sub_sample=True, bn_layer=True | |
| ): | |
| super(_NonLocalBlockND, self).__init__() | |
| assert dimension in [1, 2, 3] | |
| self.dimension = dimension | |
| self.sub_sample = sub_sample | |
| self.in_channels = in_channels | |
| self.inter_channels = inter_channels | |
| if self.inter_channels is None: | |
| self.inter_channels = in_channels // 2 | |
| if self.inter_channels == 0: | |
| self.inter_channels = 1 | |
| if dimension == 3: | |
| conv_nd = nn.Conv3d | |
| max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2)) | |
| bn = nn.GroupNorm # (32, hidden_dim) #nn.BatchNorm3d | |
| elif dimension == 2: | |
| conv_nd = nn.Conv2d | |
| max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2)) | |
| bn = nn.GroupNorm # (32, hidden_dim)nn.BatchNorm2d | |
| else: | |
| conv_nd = nn.Conv1d | |
| max_pool_layer = nn.MaxPool1d(kernel_size=2) | |
| bn = nn.GroupNorm # (32, hidden_dim)nn.BatchNorm1d | |
| self.g = conv_nd( | |
| in_channels=self.in_channels, | |
| out_channels=self.inter_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| ) | |
| if bn_layer: | |
| self.W = nn.Sequential( | |
| conv_nd( | |
| in_channels=self.inter_channels, | |
| out_channels=self.in_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| ), | |
| bn(32, self.in_channels), | |
| ) | |
| nn.init.constant_(self.W[1].weight, 0) | |
| nn.init.constant_(self.W[1].bias, 0) | |
| else: | |
| self.W = conv_nd( | |
| in_channels=self.inter_channels, | |
| out_channels=self.in_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| ) | |
| nn.init.constant_(self.W.weight, 0) | |
| nn.init.constant_(self.W.bias, 0) | |
| self.theta = conv_nd( | |
| in_channels=self.in_channels, | |
| out_channels=self.inter_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| ) | |
| self.phi = conv_nd( | |
| in_channels=self.in_channels, | |
| out_channels=self.inter_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| ) | |
| if sub_sample: | |
| self.g = nn.Sequential(self.g, max_pool_layer) | |
| self.phi = nn.Sequential(self.phi, max_pool_layer) | |
| def forward(self, x): | |
| """ | |
| :param x: (b, c, t, h, w) | |
| :return: | |
| """ | |
| batch_size = x.size(0) | |
| g_x = self.g(x).view(batch_size, self.inter_channels, -1) | |
| g_x = g_x.permute(0, 2, 1) | |
| theta_x = self.theta(x).view(batch_size, self.inter_channels, -1) | |
| theta_x = theta_x.permute(0, 2, 1) | |
| phi_x = self.phi(x).view(batch_size, self.inter_channels, -1) | |
| f = torch.matmul(theta_x, phi_x) | |
| f_div_C = F.softmax(f, dim=-1) | |
| y = torch.matmul(f_div_C, g_x) | |
| y = y.permute(0, 2, 1).contiguous() | |
| y = y.view(batch_size, self.inter_channels, *x.size()[2:]) | |
| W_y = self.W(y) | |
| z = W_y + x | |
| return z | |
| class NONLocalBlock2D(_NonLocalBlockND): | |
| def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True): | |
| super(NONLocalBlock2D, self).__init__( | |
| in_channels, | |
| inter_channels=inter_channels, | |
| dimension=2, | |
| sub_sample=sub_sample, | |
| bn_layer=bn_layer, | |
| ) | |