File size: 4,483 Bytes
d67d34a
 
 
 
 
 
c431e93
1f0ad3c
d67d34a
 
 
1f0ad3c
c431e93
1f0ad3c
d67d34a
 
1f0ad3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d67d34a
1f0ad3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d67d34a
1f0ad3c
 
 
 
 
 
 
 
 
 
d67d34a
1f0ad3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d67d34a
1f0ad3c
d67d34a
1f0ad3c
d67d34a
 
1f0ad3c
d67d34a
 
1f0ad3c
d67d34a
1f0ad3c
 
d67d34a
1f0ad3c
d67d34a
1f0ad3c
 
 
 
 
 
 
 
 
d67d34a
 
 
1f0ad3c
 
d67d34a
1f0ad3c
2230635
1f0ad3c
 
 
d67d34a
 
1f0ad3c
 
 
 
 
 
 
 
 
 
 
d67d34a
 
1f0ad3c
d67d34a
1f0ad3c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
from json import dumps
from typing import Dict, List, Union

import numpy as np
import pandas as pd
from fastapi import FastAPI
from kafka import KafkaProducer
from pydantic import BaseModel
from pyproj import Proj

from gamma.utils import association

app = FastAPI()


@app.get("/")
def greet_json():
    return {"message": "Hello, World!"}


@app.post("/predict/")
def predict(picks: dict, stations: dict, config: dict):
    picks = picks["data"]
    stations = stations["data"]
    picks = pd.DataFrame(picks)
    picks["phase_time"] = pd.to_datetime(picks["phase_time"])
    stations = pd.DataFrame(stations)
    print(stations)
    events_, picks_ = run_gamma(picks, stations, config)
    picks_ = picks_.to_dict(orient="records")
    events_ = events_.to_dict(orient="records")

    return {"picks": picks_, "events": events_}


def set_config(region="ridgecrest"):

    config = {
        "min_picks": 8,
        "min_picks_ratio": 0.2,
        "max_residual_time": 1.0,
        "max_residual_amplitude": 1.0,
        "min_score": 0.6,
        "min_s_picks": 2,
        "min_p_picks": 2,
        "use_amplitude": False,
    }

    # ## Domain
    if region.lower() == "ridgecrest":
        config.update(
            {
                "region": "ridgecrest",
                "minlongitude": -118.004,
                "maxlongitude": -117.004,
                "minlatitude": 35.205,
                "maxlatitude": 36.205,
                "mindepth_km": 0.0,
                "maxdepth_km": 30.0,
            }
        )

    lon0 = (config["minlongitude"] + config["maxlongitude"]) / 2
    lat0 = (config["minlatitude"] + config["maxlatitude"]) / 2
    proj = Proj(f"+proj=sterea +lon_0={lon0} +lat_0={lat0}  +units=km")
    xmin, ymin = proj(config["minlongitude"], config["minlatitude"])
    xmax, ymax = proj(config["maxlongitude"], config["maxlatitude"])
    zmin, zmax = config["mindepth_km"], config["maxdepth_km"]
    xlim_km = (xmin, xmax)
    ylim_km = (ymin, ymax)
    zlim_km = (zmin, zmax)

    config.update(
        {
            "xlim_km": xlim_km,
            "ylim_km": ylim_km,
            "zlim_km": zlim_km,
            "proj": proj,
        }
    )

    config.update(
        {
            "min_picks_per_eq": 5,
            "min_p_picks_per_eq": 0,
            "min_s_picks_per_eq": 0,
            "max_sigma11": 3.0,
            "max_sigma22": 1.0,
            "max_sigma12": 1.0,
        }
    )

    config["use_dbscan"] = False
    config["use_amplitude"] = True
    config["oversample_factor"] = 8.0
    config["dims"] = ["x(km)", "y(km)", "z(km)"]
    config["method"] = "BGMM"
    config["ncpu"] = 1
    vel = {"p": 6.0, "s": 6.0 / 1.75}
    config["vel"] = vel

    config["bfgs_bounds"] = (
        (xlim_km[0] - 1, xlim_km[1] + 1),  # x
        (ylim_km[0] - 1, ylim_km[1] + 1),  # y
        (0, zlim_km[1] + 1),  # z
        (None, None),  # t
    )

    config["event_index"] = 0

    return config


config = set_config()


def run_gamma(picks, stations, config_):

    # %%
    config.update(config_)

    proj = config["proj"]

    picks = picks.rename(
        columns={
            "station_id": "id",
            "phase_time": "timestamp",
            "phase_type": "type",
            "phase_score": "prob",
            "phase_amplitude": "amp",
        }
    )
    stations[["x(km)", "y(km)"]] = stations.apply(
        lambda x: pd.Series(proj(longitude=x.longitude, latitude=x.latitude)), axis=1
    )
    stations["z(km)"] = stations["elevation_m"].apply(lambda x: -x / 1e3)
    stations = stations.rename(columns={"station_id": "id"})

    events, assignments = association(picks, stations, config, 0, config["method"])

    print(events)
    events = pd.DataFrame(events)
    events[["longitude", "latitude"]] = events.apply(
        lambda x: pd.Series(proj(longitude=x["x(km)"], latitude=x["y(km)"], inverse=True)), axis=1
    )
    events["depth_km"] = events["z(km)"]
    events.drop(columns=["x(km)", "y(km)", "z(km)"], inplace=True, errors="ignore")
    picks = picks.rename(
        columns={
            "id": "station_id",
            "timestamp": "phase_time",
            "type": "phase_type",
            "prob": "phase_score",
            "amp": "phase_amplitude",
        }
    )

    assignments = pd.DataFrame(assignments, columns=["pick_index", "event_index", "gamma_score"])
    picks = picks.join(assignments.set_index("pick_index")).fillna(-1).astype({"event_index": int})

    return events, picks