Spaces:
Build error
Build error
File size: 11,593 Bytes
247c8df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 12 10:00:30 2021
@author: Kishore
"""
################## Importing Modules ###########################################
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
import math
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from xgboost import XGBClassifier
from imblearn.over_sampling import SMOTE
from sklearn.metrics import roc_curve, auc,roc_auc_score
import plotly.express as px
import plotly.graph_objects as go
import eli5
#####################################################################
############# Identifying the problem type (Classification/Regression) in Predictive Analytics ##########
def get_problem_type1(clean_data, dependent_variable):
limit_number_of_class=10
print("problem analysis")
if (clean_data.dtypes[dependent_variable] == 'int32' or clean_data.dtypes[dependent_variable] == 'int64') and (clean_data[dependent_variable].nunique() <= limit_number_of_class):
return "classification"
else:
return "regression"
#########################################################################################################
######################### Model Building For Predictive Aanalytics ############################
def model_build(clean_data, dependent_variable,problem_type,balance_data,steps_dict):
print("Model build started")
print("hi")
d={}
lst=[]
# print(data_dict['path'])
######## data cleaning##########
train_data = clean_data.drop(dependent_variable, axis=1)
target_data = clean_data[dependent_variable]
if problem_type=="classification":
data_dict = {}
###### Models ####################
if balance_data=="Auto":
d={}
d["Before Handling Imbalanced Dataset"]=target_data.value_counts()
oversample = SMOTE()
train_data, target_data = oversample.fit_resample(train_data, target_data)
d["After Handling Imbalanced Dataset"] = target_data.value_counts()
data_dict["Handling Imbalanced Dataset"]=d
elif balance_data == "False":
data_dict["Cannot Handle Imbalanced Dataset,It is set to False"] = ""
X_train, X_test, y_train, y_test = train_test_split(train_data,target_data, test_size=0.3,
random_state=0)
# pipeline_lr = Pipeline([('scalar1', StandardScaler()),
# ('lr_classifier', LogisticRegression(random_state=0))])
pipeline_dt = Pipeline([('scalar2', StandardScaler()),
('dt_classifier', DecisionTreeClassifier())])
pipeline_randomforest = Pipeline([('scalar3', StandardScaler()),
('rf_classifier', RandomForestClassifier())])
pipeline_xgboost = Pipeline([('scalar4', StandardScaler()),
('xg_classifier',XGBClassifier() )])
############## Lets make the list of pipelines #####################
pipelines = [pipeline_dt, pipeline_randomforest,pipeline_xgboost]
best_accuracy = 0.0
best_classifier = 0
best_pipeline = ""
################## Dictionary of pipelines and classifier types for ease of reference ############
pipe_dict = {0: 'Decision_Tree', 1: 'RandomForest',2:'XGBoost_Classifier'}
########## Fit the pipelines##################
for pipe in pipelines:
pipe.fit(X_train, y_train)
models_info= {}
for i, model in enumerate(pipelines):
val = "{} Test Accuracy: {}".format(pipe_dict[i], model.score(X_test, y_test))
lst.append(val)
models_info[pipe_dict[i]]= model.score(X_test, y_test)
print("{} Test Accuracy: {}".format(pipe_dict[i], model.score(X_test, y_test)))
df_models_info=pd.DataFrame(models_info.items(),columns=["Models","Accuracy"])
for i, model in enumerate(pipelines):
if model.score(X_test, y_test) > best_accuracy:
best_accuracy = model.score(X_test, y_test)
best_pipeline = model
best_classifier = i
# print(best_pipeline)
html_object = eli5.show_weights(best_pipeline,feature_names=X_train.columns.tolist())
result = pd.read_html(html_object.data)[0]
data_dict['Model Interpretation'] = result
val1 = 'Classifier with best accuracy:{}'.format(pipe_dict[best_classifier])
lst.append(val1)
print('Classifier with best accuracy:{}'.format(pipe_dict[best_classifier]))
y_pred = best_pipeline.predict(X_test)
cn = confusion_matrix(y_test, y_pred)
data_dict['Model details'] = lst
fig = px.histogram(df_models_info, x="Models", y="Accuracy", color="Models")
fig.update_layout(yaxis_title="Accuracy")
data_dict['model_comparison'] = fig
data_dict['Best model']= lst[-1].split(':')[1]
data_dict['Best pipeline'] = best_pipeline
data_dict['Confusion Matrix'] = cn
if len(X_train) <= 100000:
cv = cross_val_score(best_pipeline, X_train, y_train, cv=5, scoring='accuracy')
data_dict['Cross Validation'] = cv
report = classification_report(y_test, y_pred)
data_dict['Classification Report']=report
y_scores = best_pipeline.predict_proba(X_test)
# One hot encode the labels in order to plot them
y_onehot = pd.get_dummies(y_test, columns=best_pipeline.classes_)
# Create an empty figure, and iteratively add new lines
# every time we compute a new class
fig = go.Figure()
fig.add_shape(
type='line', line=dict(dash='dash'),
x0=0, x1=1, y0=0, y1=1
)
for i in range(y_scores.shape[1]):
y_true = y_onehot.iloc[:, i]
y_score = y_scores[:, i]
fpr, tpr, _ = roc_curve(y_true, y_score)
auc_score = roc_auc_score(y_true, y_score)
class_name=""
for data1 in steps_dict['categorical_to_numeric']:
for key, value in data1.items():
col_name = key.split('_encoded')[0]
if col_name == dependent_variable:
# print(col_name)
# print(value)
d = {}
for j, v in value.items():
if v == y_onehot.columns[i]:
class_name=j
break
name = f"{class_name} (AUC={auc_score:.2f})"
fig.add_trace(go.Scatter(x=fpr, y=tpr, name=name, mode='lines'))
fig.update_layout(
xaxis_title='False Positive Rate',
yaxis_title='True Positive Rate',
yaxis=dict(scaleanchor="x", scaleratio=1),
xaxis=dict(constrain='domain'),
width=700, height=500
)
data_dict['ROC Curve'] = fig
print("model completed")
return data_dict
elif problem_type == "regression":
data_dict={}
X_train, X_test, y_train, y_test = train_test_split(train_data, target_data, test_size=0.3,random_state=0)
pipeline_linear = Pipeline([('scalar1', StandardScaler()),('linear_cdt_regressor', LinearRegression())])
#pipeline_lr = Pipeline([('scalar2', StandardScaler()),('lr_regressor', LogisticRegression())])
pipeline_dt = Pipeline([('scalar2', StandardScaler()),('dt_regressor', DecisionTreeRegressor())])
pipeline_randomforest = Pipeline([('scalar3', StandardScaler()),('rf_regressor', RandomForestRegressor())])
pipeline_svm = Pipeline([('scalar4', StandardScaler()), ('svr',SVR(kernel='linear'))])
pipeline_regression = [pipeline_linear,pipeline_dt,pipeline_randomforest,pipeline_svm]
best_accuracy = 0.0
best_regressor = 0
best_pipeline = ""
################## Dictionary of pipelines and classifier types for ease of reference ############
# pipe_dict = {0: 'Linear_Regression', 1: 'Logistic_Regression', 2: 'Decision_Tree', 3: 'RandomForest',4:'SVM'}
pipe_dict = {0: 'Linear_Regression', 1: 'Decision_Tree', 2: 'RandomForest', 3: 'SVM'}
for pipe in pipeline_regression:
pipe.fit(X_train, y_train)
models_info = {}
for i, model in enumerate(pipeline_regression):
val = "{} Test Accuracy: {}".format(pipe_dict[i], model.score(X_test, y_test))
lst.append(val)
models_info[pipe_dict[i]] = model.score(X_test, y_test)
print("{} Test Accuracy: {}".format(pipe_dict[i], model.score(X_test, y_test)))
df_models_info = pd.DataFrame(models_info.items(), columns=["Models", "Accuracy"])
for i, model in enumerate(pipeline_regression):
if model.score(X_test, y_test) > best_accuracy:
best_accuracy = model.score(X_test, y_test)
best_pipeline = model
best_regressor = i
# print(best_pipeline)
html_object = eli5.show_weights(best_pipeline, feature_names=X_train.columns.tolist())
result = pd.read_html(html_object.data)[0]
data_dict['Model Interpretation'] = result
val1='Regressor with best accuracy:{}'.format(pipe_dict[best_regressor])
lst.append(val1)
print('Regressor with best accuracy:{}'.format(pipe_dict[best_regressor]))
data_dict['Model details'] = lst
fig = px.histogram(df_models_info, x="Models", y="Accuracy", color="Models")
fig.update_layout(yaxis_title="Accuracy")
data_dict['model_comparison'] = fig
data_dict['Best model'] = lst[-1].split(':')[1]
data_dict['Best pipeline'] = best_pipeline
y_pred = best_pipeline.predict(X_test)
# print(y_pred)
mse = mean_squared_error(y_test, y_pred)
# print(mse)
rmse = math.sqrt(mse)
# print(rmse)
r2 = r2_score(y_test, y_pred)
statement_mse = "MEAN SQUARED ERROR : " + str(mse)
statement_rmse = "ROOT MEAN SQUARED ERROR : " + str(rmse)
statement_r2 = "R2 Score : " + str(r2)
data_dict['MEAN SQUARED ERROR']=statement_mse
data_dict['ROOT MEAN SQUARED ERROR']=statement_rmse
data_dict['R2 Score']=statement_r2
cv = cross_val_score(best_pipeline, X_train, y_train, cv=5)
data_dict['Cross Validation']=cv
fig = go.Figure([
go.Scatter(y=y_test, name='Actual', mode='markers'),
go.Scatter(y=y_pred, name='Predicted', mode='markers')
])
fig.update_layout(
title=str(lst[-1].split(':')[1]),
xaxis_title="Count",
yaxis_title="Target values")
# plt.show()
data_dict['Regression graph']=fig
return data_dict
else:
return d
###############################################################################################
|