File size: 2,499 Bytes
c7db14f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
import gradio as gr

from pipeline import ChatsSDXLPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import CLIPFeatureExtractor
from diffusers.utils import logging
from PIL import Image

logging.set_verbosity_error()

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32")
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")

# Load CHATS-SDXL pipeline
pipe = ChatsSDXLPipeline.from_pretrained(
        "AIDC-AI/CHATS",
        safety_checker=safety_checker,
        feature_extractor=feature_extractor,
        torch_dtype=torch.float16
)
pipe.to(DEVICE)

def generate(prompt, steps=50, guidance_scale=7.5, height=768, width=512):
  output = pipe(
      prompt=prompt,
      num_inference_steps=steps,
      guidance_scale=guidance_scale,
      height=height,
      width=width,
      seed=0
  )
  image = output['images'][0]
  image = Image.fromarray(image)
  return image

with gr.Blocks(title="🔥 CHATS-SDXL Demo") as demo:
    gr.Markdown(
        "## CHATS-SDXL Text-to-Image Demo\n\n"
        "Enter your prompt and click **Generate Image**. All NSFW content will be automatically filtered."
    )
    with gr.Row():
        prompt_input = gr.Textbox(
            label="Prompt",
            placeholder="Enter your description here...",
            lines=2,
        )
    with gr.Row():
        steps_slider = gr.Slider(
            minimum=1, maximum=100, value=50, step=1,
            label="Inference Steps"
        )
        scale_slider = gr.Slider(
            minimum=1.0, maximum=14.0, value=5.0, step=0.1,
            label="Guidance Scale"
        )
    with gr.Row():
        height_slider = gr.Slider(
            minimum=64, maximum=2048, value=1024, step=64, 
            label="Image Height"
        )
        width_slider = gr.Slider(
            minimum=64, maximum=2048, value=1024, step=64, 
            label="Image Width"
        )
    generate_button = gr.Button("Generate Image")
    gallery = gr.Gallery(
        label="Generated Images",
        show_label=False,
        columns=2,     
        elem_id="gallery"
    )

    generate_button.click(
        fn=generate,
        inputs=[prompt_input, steps_slider, scale_slider, height_slider, width_slider],
        outputs=[gallery],
    )

if __name__ == "__main__":
    demo.launch()