|
import torch |
|
import gradio as gr |
|
import spaces |
|
import random |
|
import numpy as np |
|
|
|
from pipeline import ChatsSDXLPipeline |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from transformers import CLIPFeatureExtractor |
|
from diffusers.utils import logging |
|
from PIL import Image |
|
|
|
logging.set_verbosity_error() |
|
|
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32") |
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker") |
|
|
|
|
|
pipe = ChatsSDXLPipeline.from_pretrained( |
|
"AIDC-AI/CHATS", |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
torch_dtype=torch.bfloat16 |
|
) |
|
pipe.to(DEVICE) |
|
|
|
@spaces.GPU(duration=75) |
|
def generate(prompt, seed=0, randomize_seed=False, steps=50, guidance_scale=5.0): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
print('inference with prompt : {}, seed : {}, step : {}, cfg : {}'.format(prompt, seed, steps, guidance_scale)) |
|
output = pipe( |
|
prompt=prompt, |
|
num_inference_steps=steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed |
|
) |
|
return output['images'][0] |
|
|
|
examples = [ |
|
"Solar punk vehicle in a bustling city", |
|
"An anthropomorphic cat riding a Harley Davidson in Arizona with sunglasses and a leather jacket", |
|
"An elderly woman poses for a high fashion photoshoot in colorful, patterned clothes with a cyberpunk 2077 vibe", |
|
] |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f"""# CHATS-SDXL |
|
SDXL diffusion models finetuned using preference optimization framework CHATS. [[paper](https://arxiv.org/pdf/2502.12579)] [[code](https://github.com/AIDC-AI/CHATS)] [[model](https://huggingface.co/AIDC-AI/CHATS)] |
|
""") |
|
|
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt here", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) |
|
|
|
with gr.Row(): |
|
|
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=1, |
|
maximum=14, |
|
step=0.1, |
|
value=5.0, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=50, |
|
) |
|
|
|
gr.Examples( |
|
examples = examples, |
|
fn = generate, |
|
inputs = [prompt], |
|
outputs = [result], |
|
cache_examples="lazy" |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn = generate, |
|
inputs = [prompt, seed, randomize_seed, num_inference_steps, guidance_scale], |
|
outputs = [result] |
|
) |
|
|
|
if __name__ == '__main__': |
|
demo.launch() |