import torch import gradio as gr import spaces import random import numpy as np from pipeline import ChatsSDXLPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from transformers import CLIPFeatureExtractor from diffusers.utils import logging from PIL import Image logging.set_verbosity_error() DEVICE = "cuda" if torch.cuda.is_available() else "cpu" MAX_SEED = np.iinfo(np.int32).max feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32") safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker") # Load CHATS-SDXL pipeline pipe = ChatsSDXLPipeline.from_pretrained( "AIDC-AI/CHATS", safety_checker=safety_checker, feature_extractor=feature_extractor, torch_dtype=torch.bfloat16 ) pipe.to(DEVICE) @spaces.GPU(duration=75) def generate(prompt, seed=0, randomize_seed=False, steps=50, guidance_scale=5.0): if randomize_seed: seed = random.randint(0, MAX_SEED) print('inference with prompt : {}, seed : {}, step : {}, cfg : {}'.format(prompt, seed, steps, guidance_scale)) output = pipe( prompt=prompt, num_inference_steps=steps, guidance_scale=guidance_scale, seed=seed ) return output['images'][0] examples = [ "Solar punk vehicle in a bustling city", "An anthropomorphic cat riding a Harley Davidson in Arizona with sunglasses and a leather jacket", "An elderly woman poses for a high fashion photoshoot in colorful, patterned clothes with a cyberpunk 2077 vibe", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# CHATS-SDXL SDXL diffusion models finetuned using preference optimization framework CHATS. [[paper](https://arxiv.org/pdf/2502.12579)] [[code](https://github.com/AIDC-AI/CHATS)] [[model](https://huggingface.co/AIDC-AI/CHATS)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt here", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=False) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=14, step=0.1, value=5.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=50, ) gr.Examples( examples = examples, fn = generate, inputs = [prompt], outputs = [result], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = generate, inputs = [prompt, seed, randomize_seed, num_inference_steps, guidance_scale], outputs = [result] ) if __name__ == '__main__': demo.launch()