Spaces:
Runtime error
Runtime error
Commit
·
eb43d71
1
Parent(s):
502d612
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
from __future__ import unicode_literals
|
| 2 |
import youtube_dl
|
|
|
|
| 3 |
from pydub import AudioSegment
|
| 4 |
from pyannote.audio import Pipeline
|
| 5 |
import re
|
|
@@ -24,12 +25,6 @@ import contextlib
|
|
| 24 |
from sklearn.cluster import AgglomerativeClustering
|
| 25 |
import numpy as np
|
| 26 |
|
| 27 |
-
model = whisper.load_model("medium")
|
| 28 |
-
embedding_model = PretrainedSpeakerEmbedding(
|
| 29 |
-
"speechbrain/spkrec-ecapa-voxceleb",
|
| 30 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 31 |
-
)
|
| 32 |
-
|
| 33 |
|
| 34 |
__FILES = set()
|
| 35 |
|
|
@@ -49,7 +44,7 @@ def RemoveAllFiles():
|
|
| 49 |
|
| 50 |
def Transcribe_V1(NumberOfSpeakers, SpeakerNames="", audio="temp_audio.wav"):
|
| 51 |
SPEAKER_DICT = {}
|
| 52 |
-
SPEAKERS = [speaker.strip() for speaker in SpeakerNames.split(',')]
|
| 53 |
|
| 54 |
def GetSpeaker(sp):
|
| 55 |
speaker = sp
|
|
@@ -109,7 +104,7 @@ def Transcribe_V1(NumberOfSpeakers, SpeakerNames="", audio="temp_audio.wav"):
|
|
| 109 |
return f"dz_{audio}.wav", dzList, segments
|
| 110 |
|
| 111 |
def transcribe(dz_audio):
|
| 112 |
-
model = whisper.load_model("
|
| 113 |
result = model.transcribe(dz_audio)
|
| 114 |
# for _ in result['segments']:
|
| 115 |
# print(_['start'], _['end'], _['text'])
|
|
@@ -144,8 +139,13 @@ def Transcribe_V1(NumberOfSpeakers, SpeakerNames="", audio="temp_audio.wav"):
|
|
| 144 |
|
| 145 |
|
| 146 |
def Transcribe_V2(num_speakers, speaker_names, audio="temp_audio.wav"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
SPEAKER_DICT = {}
|
| 148 |
-
SPEAKERS = [speaker.strip() for speaker in speaker_names.split(',')]
|
| 149 |
def GetSpeaker(sp):
|
| 150 |
speaker = sp
|
| 151 |
if sp not in list(SPEAKER_DICT.keys()):
|
|
@@ -223,6 +223,7 @@ def Transcribe_V2(num_speakers, speaker_names, audio="temp_audio.wav"):
|
|
| 223 |
# return output
|
| 224 |
|
| 225 |
def AudioTranscribe(NumberOfSpeakers=None, SpeakerNames="", audio="", retries=5):
|
|
|
|
| 226 |
if retries:
|
| 227 |
# subprocess.call(['ffmpeg', '-i', audio,'temp_audio.wav'])
|
| 228 |
try:
|
|
@@ -268,7 +269,7 @@ def YoutubeTranscribe(NumberOfSpeakers=None, SpeakerNames="", URL="", retries =
|
|
| 268 |
}],
|
| 269 |
}
|
| 270 |
try:
|
| 271 |
-
with
|
| 272 |
ydl.download([URL])
|
| 273 |
except:
|
| 274 |
return YoutubeTranscribe(NumberOfSpeakers, SpeakerNames, URL, retries-1)
|
|
@@ -295,5 +296,43 @@ at = gr.Interface(
|
|
| 295 |
outputs=[gr.Textbox(label="Transcribed Text", lines=15), gr.JSON(label="Transcribed JSON")]
|
| 296 |
)
|
| 297 |
|
| 298 |
-
demo = gr.TabbedInterface([ut, vt, at], ["Youtube URL", "Video", "Audio"])
|
| 299 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from __future__ import unicode_literals
|
| 2 |
import youtube_dl
|
| 3 |
+
import yt_dlp
|
| 4 |
from pydub import AudioSegment
|
| 5 |
from pyannote.audio import Pipeline
|
| 6 |
import re
|
|
|
|
| 25 |
from sklearn.cluster import AgglomerativeClustering
|
| 26 |
import numpy as np
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
__FILES = set()
|
| 30 |
|
|
|
|
| 44 |
|
| 45 |
def Transcribe_V1(NumberOfSpeakers, SpeakerNames="", audio="temp_audio.wav"):
|
| 46 |
SPEAKER_DICT = {}
|
| 47 |
+
SPEAKERS = [speaker.strip() for speaker in SpeakerNames.split(',') if len(speaker)]
|
| 48 |
|
| 49 |
def GetSpeaker(sp):
|
| 50 |
speaker = sp
|
|
|
|
| 104 |
return f"dz_{audio}.wav", dzList, segments
|
| 105 |
|
| 106 |
def transcribe(dz_audio):
|
| 107 |
+
model = whisper.load_model("medium")
|
| 108 |
result = model.transcribe(dz_audio)
|
| 109 |
# for _ in result['segments']:
|
| 110 |
# print(_['start'], _['end'], _['text'])
|
|
|
|
| 139 |
|
| 140 |
|
| 141 |
def Transcribe_V2(num_speakers, speaker_names, audio="temp_audio.wav"):
|
| 142 |
+
model = whisper.load_model("medium")
|
| 143 |
+
embedding_model = PretrainedSpeakerEmbedding(
|
| 144 |
+
"speechbrain/spkrec-ecapa-voxceleb",
|
| 145 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 146 |
+
)
|
| 147 |
SPEAKER_DICT = {}
|
| 148 |
+
SPEAKERS = [speaker.strip() for speaker in speaker_names.split(',') if len(speaker)]
|
| 149 |
def GetSpeaker(sp):
|
| 150 |
speaker = sp
|
| 151 |
if sp not in list(SPEAKER_DICT.keys()):
|
|
|
|
| 223 |
# return output
|
| 224 |
|
| 225 |
def AudioTranscribe(NumberOfSpeakers=None, SpeakerNames="", audio="", retries=5):
|
| 226 |
+
print(f"{NumberOfSpeakers}, {SpeakerNames}, {retries}")
|
| 227 |
if retries:
|
| 228 |
# subprocess.call(['ffmpeg', '-i', audio,'temp_audio.wav'])
|
| 229 |
try:
|
|
|
|
| 269 |
}],
|
| 270 |
}
|
| 271 |
try:
|
| 272 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 273 |
ydl.download([URL])
|
| 274 |
except:
|
| 275 |
return YoutubeTranscribe(NumberOfSpeakers, SpeakerNames, URL, retries-1)
|
|
|
|
| 296 |
outputs=[gr.Textbox(label="Transcribed Text", lines=15), gr.JSON(label="Transcribed JSON")]
|
| 297 |
)
|
| 298 |
|
| 299 |
+
# demo = gr.TabbedInterface([ut, vt, at], ["Youtube URL", "Video", "Audio"])
|
| 300 |
+
# demo.launch()
|
| 301 |
+
with gr.Blocks() as yav_ui:
|
| 302 |
+
with gr.Tab("Input"):
|
| 303 |
+
with gr.Tab("Youtube", id=1):
|
| 304 |
+
yinput_nos = gr.Number(label="Number of Speakers", placeholder="2")
|
| 305 |
+
yinput_sn = gr.Textbox(label="Name of the Speakers (ordered by the time they speak and separated by comma)", placeholder="If Speaker 1 is first to speak followed by Speaker 2 then -> Speaker 1, Speaker 2")
|
| 306 |
+
yinput = gr.Textbox(label="Youtube Link", placeholder="https://www.youtube.com/watch?v=GECcjrYHH8w")
|
| 307 |
+
ybutton_transcribe = gr.Button("Transcribe")
|
| 308 |
+
with gr.Tab("Video", id=2):
|
| 309 |
+
vinput_nos = gr.Number(label="Number of Speakers", placeholder="2")
|
| 310 |
+
vinput_sn = gr.Textbox(label="Name of the Speakers (ordered by the time they speak and separated by comma)", placeholder="If Speaker 1 is first to speak followed by Speaker 2 then -> Speaker 1, Speaker 2")
|
| 311 |
+
vinput = gr.Video(label="Video")
|
| 312 |
+
vbutton_transcribe = gr.Button("Transcribe")
|
| 313 |
+
with gr.Tab("Audio", id=3):
|
| 314 |
+
ainput_nos = gr.Number(label="Number of Speakers", placeholder="2")
|
| 315 |
+
ainput_sn = gr.Textbox(label="Name of the Speakers (ordered by the time they speak and separated by comma)", placeholder="If Speaker 1 is first to speak followed by Speaker 2 then -> Speaker 1, Speaker 2")
|
| 316 |
+
ainput = gr.Audio(label="Audio")
|
| 317 |
+
abutton_transcribe = gr.Button("Transcribe")
|
| 318 |
+
with gr.Tab("Output"):
|
| 319 |
+
with gr.Tab("Text"):
|
| 320 |
+
output_textbox = gr.Textbox(label="Transcribed Text", lines=15)
|
| 321 |
+
with gr.Tab("JSON"):
|
| 322 |
+
output_json = gr.JSON(label="Transcribed JSON")
|
| 323 |
+
ybutton_transcribe.click(
|
| 324 |
+
fn=YoutubeTranscribe,
|
| 325 |
+
inputs=[yinput_nos,yinput_sn,yinput],
|
| 326 |
+
outputs=[output_textbox,output_json]
|
| 327 |
+
)
|
| 328 |
+
abutton_transcribe.click(
|
| 329 |
+
fn=AudioTranscribe,
|
| 330 |
+
inputs=[ainput_nos,ainput_sn,ainput],
|
| 331 |
+
outputs=[output_textbox,output_json]
|
| 332 |
+
)
|
| 333 |
+
vbutton_transcribe.click(
|
| 334 |
+
fn=VideoTranscribe,
|
| 335 |
+
inputs=[vinput_nos,vinput_sn,vinput],
|
| 336 |
+
outputs=[output_textbox,output_json]
|
| 337 |
+
)
|
| 338 |
+
yav_ui.launch(debug=True)
|