Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +346 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,348 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
import
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
""
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
st.
|
34 |
-
|
35 |
-
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
1 |
+
import os
|
2 |
+
os.environ['HF_HOME'] = '/tmp'
|
3 |
+
import time
|
4 |
import streamlit as st
|
5 |
+
import pandas as pd
|
6 |
+
import io
|
7 |
+
import plotly.express as px
|
8 |
+
import zipfile
|
9 |
+
import json
|
10 |
+
from cryptography.fernet import Fernet
|
11 |
+
from streamlit_extras.stylable_container import stylable_container
|
12 |
+
from typing import Optional
|
13 |
+
from gliner import GLiNER
|
14 |
+
from comet_ml import Experiment
|
15 |
+
from transformers import pipeline
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
st.markdown(
|
21 |
+
"""
|
22 |
+
<style>
|
23 |
+
/* Main app background with a subtle rainbow gradient */
|
24 |
+
.stApp {
|
25 |
+
background: linear-gradient(135deg, #f0f8ff, #f5f0ff, #fff0f5);
|
26 |
+
color: #000000;
|
27 |
+
font-family: 'Inter', sans-serif;
|
28 |
+
}
|
29 |
+
|
30 |
+
/* Rainbow gradient for the sidebar */
|
31 |
+
.css-1d36184, .css-1d36184:hover, .css-1d36184:focus {
|
32 |
+
background: linear-gradient(180deg, #FFC0CB, #FFD700, #98FB98, #ADD8E6, #BA55D3);
|
33 |
+
secondary-background-color: #FFC080;
|
34 |
+
}
|
35 |
+
|
36 |
+
/* Expander background color with a slight transparency */
|
37 |
+
.streamlit-expanderContent {
|
38 |
+
background-color: rgba(255, 255, 255, 0.7);
|
39 |
+
border-radius: 10px;
|
40 |
+
}
|
41 |
+
|
42 |
+
/* Expander header with a gentle gradient and bold text */
|
43 |
+
.streamlit-expanderHeader {
|
44 |
+
background: linear-gradient(90deg, #FADADD, #FFF9E0, #E0FFF8);
|
45 |
+
border-radius: 10px;
|
46 |
+
font-weight: bold;
|
47 |
+
}
|
48 |
+
|
49 |
+
/* Text Area with a light background and subtle border */
|
50 |
+
.stTextArea textarea {
|
51 |
+
background-color: #FFF0F5;
|
52 |
+
color: #000000;
|
53 |
+
border: 1px solid #ccc;
|
54 |
+
border-radius: 8px;
|
55 |
+
}
|
56 |
+
|
57 |
+
/* Button with a solid color and elegant hover effect */
|
58 |
+
.stButton > button {
|
59 |
+
background-color: #FF69B4;
|
60 |
+
color: #FFFFFF;
|
61 |
+
font-weight: bold;
|
62 |
+
border-radius: 12px;
|
63 |
+
transition: all 0.2s ease-in-out;
|
64 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
65 |
+
}
|
66 |
+
.stButton > button:hover {
|
67 |
+
background-color: #FFB6C1;
|
68 |
+
box-shadow: 0 6px 8px rgba(0, 0, 0, 0.15);
|
69 |
+
transform: translateY(-2px);
|
70 |
+
}
|
71 |
+
|
72 |
+
/* Warning box with a soft orange and rounded corners */
|
73 |
+
.stAlert.st-warning {
|
74 |
+
background-color: #FFDDAA;
|
75 |
+
color: #000000;
|
76 |
+
border-radius: 10px;
|
77 |
+
border-left: 5px solid #FFA500;
|
78 |
+
}
|
79 |
+
|
80 |
+
/* Success box with a fresh green and rounded corners */
|
81 |
+
.stAlert.st-success {
|
82 |
+
background-color: #D4EDDA;
|
83 |
+
color: #155724;
|
84 |
+
border-radius: 10px;
|
85 |
+
border-left: 5px solid #28A745;
|
86 |
+
}
|
87 |
+
|
88 |
+
/* Custom CSS to make the title text rainbow-colored */
|
89 |
+
h1 {
|
90 |
+
background: linear-gradient(45deg, #FF69B4, #FFD700, #00FF7F, #00BFFF, #8A2BE2);
|
91 |
+
-webkit-background-clip: text;
|
92 |
+
-webkit-text-fill-color: transparent;
|
93 |
+
font-size: 3em;
|
94 |
+
font-weight: 800;
|
95 |
+
}
|
96 |
+
|
97 |
+
</style>
|
98 |
+
""",
|
99 |
+
unsafe_allow_html=True
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
st.set_page_config(
|
104 |
+
layout="wide",
|
105 |
+
page_title="English Keyphrase"
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
# --- Comet ML Setup ---
|
111 |
+
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
112 |
+
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
113 |
+
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
114 |
+
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
|
115 |
+
|
116 |
+
if not comet_initialized:
|
117 |
+
st.warning("Comet ML not initialized. Check environment variables.")
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
# --- UI Header and Notes ---
|
124 |
+
st.subheader("AcademiaMiner", divider="rainbow")
|
125 |
+
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
126 |
+
|
127 |
+
expander = st.expander("**Important notes*")
|
128 |
+
expander.write('''
|
129 |
+
**Named Entities:** This AcademiaMiner extracts keyphrases from English academic and scientific papers.
|
130 |
+
|
131 |
+
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
132 |
+
|
133 |
+
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
134 |
+
|
135 |
+
**Usage Limits:** You can request results unlimited times for one (1) month.
|
136 |
+
|
137 |
+
**Supported Languages:** English
|
138 |
+
|
139 |
+
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
|
140 |
+
|
141 |
+
For any errors or inquiries, please contact us at [email protected]'''
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
with st.sidebar:
|
147 |
+
st.write("Use the following code to embed the AcademiaMiner web app on your website. Feel free to adjust the width and height values to fit your page.")
|
148 |
+
code = '''
|
149 |
+
<iframe
|
150 |
+
src="https://aiecosystem-business-core.hf.space"
|
151 |
+
frameborder="0"
|
152 |
+
width="850"
|
153 |
+
height="450"
|
154 |
+
></iframe>
|
155 |
+
'''
|
156 |
+
st.code(code, language="html")
|
157 |
+
st.text("")
|
158 |
+
st.text("")
|
159 |
+
st.divider()
|
160 |
+
st.subheader("🚀 Ready to build your own NER Web App?", divider="rainbow")
|
161 |
+
st.link_button("NER Builder", "https://nlpblogs.com", type="primary")
|
162 |
+
|
163 |
+
|
164 |
+
@st.cache_resource
|
165 |
+
def load_ner_model():
|
166 |
+
"""Loads the GLiNER model and caches it."""
|
167 |
+
try:
|
168 |
+
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
|
169 |
+
except Exception as e:
|
170 |
+
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
171 |
+
st.stop()
|
172 |
+
model = load_ner_model()
|
173 |
+
|
174 |
+
|
175 |
+
@st.cache_resource
|
176 |
+
def load_ner_model():
|
177 |
+
return pipeline("token-classification",
|
178 |
+
model="ml6team/keyphrase-extraction-kbir-inspec",
|
179 |
+
aggregation_strategy="max",
|
180 |
+
stride=128,
|
181 |
+
ignore_labels=["O"])
|
182 |
+
|
183 |
+
model = load_ner_model()
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area')
|
188 |
+
|
189 |
+
def clear_text():
|
190 |
+
"""Clears the text area."""
|
191 |
+
st.session_state['my_text_area'] = ""
|
192 |
+
|
193 |
+
st.button("Clear text", on_click=clear_text)
|
194 |
+
|
195 |
+
|
196 |
+
if st.button("Results"):
|
197 |
+
start_time = time.time()
|
198 |
+
if not text.strip():
|
199 |
+
st.warning("Please enter some text to extract entities.")
|
200 |
+
else:
|
201 |
+
with st.spinner("Analyzing text...", show_time=True):
|
202 |
+
entities = model(text_for_ner)
|
203 |
+
data = []
|
204 |
+
if entities:
|
205 |
+
for entity in entities:
|
206 |
+
if all(k in entity for k in ['word', 'entity_group', 'score', 'start', 'end']):
|
207 |
+
data.append({
|
208 |
+
'word': entity['word'],
|
209 |
+
'entity_group': entity['entity_group'],
|
210 |
+
'score': entity['score'],
|
211 |
+
'start': entity['start'],
|
212 |
+
'end': entity['end']
|
213 |
+
})
|
214 |
+
else:
|
215 |
+
st.warning(f"Skipping malformed entity encountered: {entity}. Missing expected keys.")
|
216 |
+
df = pd.DataFrame(data)
|
217 |
+
else:
|
218 |
+
df = pd.DataFrame(columns=['word', 'entity_group', 'score', 'start', 'end'])
|
219 |
+
|
220 |
+
if not df.empty:
|
221 |
+
pattern = r'[^\w\s]'
|
222 |
+
df['word'] = df['word'].replace(pattern, '', regex=True)
|
223 |
+
df = df.replace('', 'Unknown')
|
224 |
+
|
225 |
+
st.subheader("All Extracted Keyphrases", divider="rainbow")
|
226 |
+
st.dataframe(df, use_container_width=True)
|
227 |
+
|
228 |
+
with st.expander("See Glossary of tags"):
|
229 |
+
st.write('''
|
230 |
+
**word**: ['entity extracted from your text data']
|
231 |
+
|
232 |
+
**score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
|
233 |
+
|
234 |
+
**entity_group**: ['label (tag) assigned to a given extracted entity']
|
235 |
+
|
236 |
+
**start**: ['index of the start of the corresponding entity']
|
237 |
+
|
238 |
+
**end**: ['index of the end of the corresponding entity']
|
239 |
+
|
240 |
+
''')
|
241 |
+
st.divider()
|
242 |
+
|
243 |
+
st.subheader("Most Frequent Keyphrases", divider="rainbow")
|
244 |
+
word_counts = df['word'].value_counts().reset_index()
|
245 |
+
word_counts.columns = ['word', 'count']
|
246 |
+
df_frequent = word_counts.sort_values(by='count', ascending=False).head(15)
|
247 |
+
|
248 |
+
if not df_frequent.empty:
|
249 |
+
tab1, tab2 = st.tabs(["Table", "Chart"])
|
250 |
+
|
251 |
+
with tab1:
|
252 |
+
st.dataframe(df_frequent, use_container_width=True)
|
253 |
+
|
254 |
+
with tab2:
|
255 |
+
fig_frequent_bar = px.bar(
|
256 |
+
df_frequent,
|
257 |
+
x='count',
|
258 |
+
y='word',
|
259 |
+
orientation='h',
|
260 |
+
title='Top Frequent Keyphrases by Count',
|
261 |
+
color='count',
|
262 |
+
color_continuous_scale=px.colors.sequential.Viridis
|
263 |
+
)
|
264 |
+
fig_frequent_bar.update_layout(yaxis={'categoryorder':'total ascending'})
|
265 |
+
st.plotly_chart(fig_frequent_bar, use_container_width=True)
|
266 |
+
|
267 |
+
if comet_initialized and 'experiment' in locals():
|
268 |
+
experiment.log_figure(figure=fig_frequent_bar, figure_name="frequent_keyphrases_bar_chart")
|
269 |
+
else:
|
270 |
+
st.info("No keyphrases found with more than one occurrence to display in tabs.")
|
271 |
+
|
272 |
+
st.divider()
|
273 |
+
|
274 |
+
experiment = None
|
275 |
+
if comet_initialized:
|
276 |
+
experiment = Experiment(
|
277 |
+
api_key=COMET_API_KEY,
|
278 |
+
workspace=COMET_WORKSPACE,
|
279 |
+
project_name=COMET_PROJECT_NAME,
|
280 |
+
)
|
281 |
+
experiment.log_parameter("input_source_type", source_type)
|
282 |
+
experiment.log_parameter("input_content_length", len(text_for_ner))
|
283 |
+
experiment.log_table("predicted_entities", df)
|
284 |
+
|
285 |
+
st.subheader("Treemap of All Keyphrases", divider="rainbow")
|
286 |
+
fig_treemap = px.treemap(
|
287 |
+
df,
|
288 |
+
path=[px.Constant("all"), 'entity_group', 'word'],
|
289 |
+
values='score',
|
290 |
+
color='word',
|
291 |
+
color_continuous_scale=px.colors.sequential.Plasma
|
292 |
+
)
|
293 |
+
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
294 |
+
st.plotly_chart(fig_treemap, use_container_width=True)
|
295 |
+
|
296 |
+
if comet_initialized and experiment:
|
297 |
+
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
|
298 |
+
|
299 |
+
# --- Download Section ---
|
300 |
+
dfa = pd.DataFrame(
|
301 |
+
data={
|
302 |
+
'Column Name': ['word', 'entity_group', 'score', 'start', 'end'],
|
303 |
+
'Description': [
|
304 |
+
'entity extracted from your text data',
|
305 |
+
'label (tag) assigned to a given extracted entity',
|
306 |
+
'accuracy score; how accurately a tag has been assigned to a given entity',
|
307 |
+
'index of the start of the corresponding entity',
|
308 |
+
'index of the end of the corresponding entity'
|
309 |
+
]
|
310 |
+
}
|
311 |
+
)
|
312 |
+
buf = io.BytesIO()
|
313 |
+
with zipfile.ZipFile(buf, "w") as myzip:
|
314 |
+
if not df.empty:
|
315 |
+
myzip.writestr("Summary_of_results.csv", df.to_csv(index=False))
|
316 |
+
myzip.writestr("Most_frequent_keyphrases.csv", df_frequent.to_csv(index=False))
|
317 |
+
myzip.writestr("Glossary_of_tags.csv", dfa.to_csv(index=False))
|
318 |
|
319 |
+
with stylable_container(
|
320 |
+
key="download_button",
|
321 |
+
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
|
322 |
+
):
|
323 |
+
st.download_button(
|
324 |
+
label="Download zip file",
|
325 |
+
data=buf.getvalue(),
|
326 |
+
file_name="nlpblogs_ner_results.zip",
|
327 |
+
mime="application/zip",
|
328 |
+
)
|
329 |
+
st.divider()
|
330 |
+
else:
|
331 |
+
st.warning("No entities found to generate visualizations.")
|
332 |
+
else:
|
333 |
+
st.warning("No meaningful text found to process. Please enter a URL, upload a text file, or type/paste text.")
|
334 |
+
except Exception as e:
|
335 |
+
st.error(f"An unexpected error occurred during processing: {e}")
|
336 |
+
finally:
|
337 |
+
if comet_initialized and experiment is not None:
|
338 |
+
try:
|
339 |
+
experiment.end()
|
340 |
+
except Exception as comet_e:
|
341 |
+
st.warning(f"Comet ML experiment.end() failed: {comet_e}")
|
342 |
+
if start_time_overall is not None:
|
343 |
+
end_time_overall = time.time()
|
344 |
+
elapsed_time_overall = end_time_overall - start_time_overall
|
345 |
+
st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.")
|
346 |
+
st.write(f"Number of times you requested results: **{st.session_state['source_type_attempts']}/{max_attempts}**")
|
347 |
+
else:
|
348 |
+
st.warning("Please enter some text, a URL, or upload a file to analyze.")
|
|
|
|
|
|
|
|
|
|