Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +161 -257
src/streamlit_app.py
CHANGED
@@ -1,60 +1,29 @@
|
|
1 |
import os
|
2 |
-
os.environ['HF_HOME'] = '/tmp'
|
3 |
import time
|
4 |
import streamlit as st
|
5 |
import pandas as pd
|
6 |
import io
|
7 |
import plotly.express as px
|
8 |
import zipfile
|
9 |
-
import json
|
10 |
-
from cryptography.fernet import Fernet
|
11 |
from streamlit_extras.stylable_container import stylable_container
|
12 |
-
from typing import Optional
|
13 |
-
from gliner import GLiNER
|
14 |
-
from comet_ml import Experiment
|
15 |
from transformers import pipeline
|
|
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
st.markdown(
|
21 |
"""
|
22 |
<style>
|
23 |
-
/*
|
24 |
.stApp {
|
25 |
background: linear-gradient(135deg, #f0f8ff, #f5f0ff, #fff0f5);
|
26 |
color: #000000;
|
27 |
font-family: 'Inter', sans-serif;
|
28 |
}
|
29 |
-
|
30 |
-
/* Rainbow gradient for the sidebar */
|
31 |
-
.css-1d36184, .css-1d36184:hover, .css-1d36184:focus {
|
32 |
-
background: linear-gradient(180deg, #FFC0CB, #FFD700, #98FB98, #ADD8E6, #BA55D3);
|
33 |
-
secondary-background-color: #FFC080;
|
34 |
-
}
|
35 |
-
|
36 |
-
/* Expander background color with a slight transparency */
|
37 |
-
.streamlit-expanderContent {
|
38 |
-
background-color: rgba(255, 255, 255, 0.7);
|
39 |
-
border-radius: 10px;
|
40 |
-
}
|
41 |
-
|
42 |
-
/* Expander header with a gentle gradient and bold text */
|
43 |
-
.streamlit-expanderHeader {
|
44 |
-
background: linear-gradient(90deg, #FADADD, #FFF9E0, #E0FFF8);
|
45 |
-
border-radius: 10px;
|
46 |
-
font-weight: bold;
|
47 |
-
}
|
48 |
-
|
49 |
-
/* Text Area with a light background and subtle border */
|
50 |
-
.stTextArea textarea {
|
51 |
-
background-color: #FFF0F5;
|
52 |
-
color: #000000;
|
53 |
-
border: 1px solid #ccc;
|
54 |
-
border-radius: 8px;
|
55 |
-
}
|
56 |
-
|
57 |
-
/* Button with a solid color and elegant hover effect */
|
58 |
.stButton > button {
|
59 |
background-color: #FF69B4;
|
60 |
color: #FFFFFF;
|
@@ -68,45 +37,11 @@ st.markdown(
|
|
68 |
box-shadow: 0 6px 8px rgba(0, 0, 0, 0.15);
|
69 |
transform: translateY(-2px);
|
70 |
}
|
71 |
-
|
72 |
-
/* Warning box with a soft orange and rounded corners */
|
73 |
-
.stAlert.st-warning {
|
74 |
-
background-color: #FFDDAA;
|
75 |
-
color: #000000;
|
76 |
-
border-radius: 10px;
|
77 |
-
border-left: 5px solid #FFA500;
|
78 |
-
}
|
79 |
-
|
80 |
-
/* Success box with a fresh green and rounded corners */
|
81 |
-
.stAlert.st-success {
|
82 |
-
background-color: #D4EDDA;
|
83 |
-
color: #155724;
|
84 |
-
border-radius: 10px;
|
85 |
-
border-left: 5px solid #28A745;
|
86 |
-
}
|
87 |
-
|
88 |
-
/* Custom CSS to make the title text rainbow-colored */
|
89 |
-
h1 {
|
90 |
-
background: linear-gradient(45deg, #FF69B4, #FFD700, #00FF7F, #00BFFF, #8A2BE2);
|
91 |
-
-webkit-background-clip: text;
|
92 |
-
-webkit-text-fill-color: transparent;
|
93 |
-
font-size: 3em;
|
94 |
-
font-weight: 800;
|
95 |
-
}
|
96 |
-
|
97 |
</style>
|
98 |
""",
|
99 |
unsafe_allow_html=True
|
100 |
)
|
101 |
|
102 |
-
|
103 |
-
st.set_page_config(
|
104 |
-
layout="wide",
|
105 |
-
page_title="English Keyphrase"
|
106 |
-
)
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
# --- Comet ML Setup ---
|
111 |
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
112 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
@@ -116,42 +51,21 @@ comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAM
|
|
116 |
if not comet_initialized:
|
117 |
st.warning("Comet ML not initialized. Check environment variables.")
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
# --- UI Header and Notes ---
|
124 |
st.subheader("AcademiaMiner", divider="rainbow")
|
125 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
126 |
-
|
127 |
expander = st.expander("**Important notes*")
|
128 |
-
expander.write('''
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
**
|
134 |
-
|
135 |
-
**Usage Limits:** You can request results unlimited times for one (1) month.
|
136 |
-
|
137 |
-
**Supported Languages:** English
|
138 |
-
|
139 |
-
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
|
140 |
-
|
141 |
-
For any errors or inquiries, please contact us at [email protected]'''
|
142 |
-
)
|
143 |
-
|
144 |
-
|
145 |
|
146 |
with st.sidebar:
|
147 |
st.write("Use the following code to embed the AcademiaMiner web app on your website. Feel free to adjust the width and height values to fit your page.")
|
148 |
code = '''
|
149 |
-
<iframe
|
150 |
-
src="https://aiecosystem-business-core.hf.space"
|
151 |
-
frameborder="0"
|
152 |
-
width="850"
|
153 |
-
height="450"
|
154 |
-
></iframe>
|
155 |
'''
|
156 |
st.code(code, language="html")
|
157 |
st.text("")
|
@@ -160,189 +74,179 @@ with st.sidebar:
|
|
160 |
st.subheader("🚀 Ready to build your own NER Web App?", divider="rainbow")
|
161 |
st.link_button("NER Builder", "https://nlpblogs.com", type="primary")
|
162 |
|
163 |
-
|
164 |
@st.cache_resource
|
165 |
def load_ner_model():
|
166 |
-
"""Loads the
|
167 |
try:
|
168 |
-
return
|
|
|
|
|
|
|
|
|
169 |
except Exception as e:
|
170 |
-
st.error(f"Failed to load NER model
|
171 |
st.stop()
|
172 |
-
model = load_ner_model()
|
173 |
-
|
174 |
-
|
175 |
-
@st.cache_resource
|
176 |
-
def load_ner_model():
|
177 |
-
return pipeline("token-classification",
|
178 |
-
model="ml6team/keyphrase-extraction-kbir-inspec",
|
179 |
-
aggregation_strategy="max",
|
180 |
-
stride=128,
|
181 |
-
ignore_labels=["O"])
|
182 |
|
183 |
model = load_ner_model()
|
184 |
-
|
185 |
-
|
186 |
|
|
|
187 |
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area')
|
188 |
|
189 |
def clear_text():
|
190 |
"""Clears the text area."""
|
191 |
st.session_state['my_text_area'] = ""
|
|
|
192 |
|
193 |
st.button("Clear text", on_click=clear_text)
|
194 |
|
195 |
-
|
196 |
if st.button("Results"):
|
197 |
-
start_time = time.time()
|
198 |
if not text.strip():
|
199 |
-
st.warning("Please enter some text to extract
|
200 |
else:
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
for entity in entities:
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
y='word',
|
259 |
-
orientation='h',
|
260 |
-
title='Top Frequent Keyphrases by Count',
|
261 |
-
color='count',
|
262 |
-
color_continuous_scale=px.colors.sequential.Viridis
|
263 |
-
)
|
264 |
-
fig_frequent_bar.update_layout(yaxis={'categoryorder':'total ascending'})
|
265 |
-
st.plotly_chart(fig_frequent_bar, use_container_width=True)
|
266 |
-
|
267 |
-
if comet_initialized and 'experiment' in locals():
|
268 |
-
experiment.log_figure(figure=fig_frequent_bar, figure_name="frequent_keyphrases_bar_chart")
|
269 |
-
else:
|
270 |
-
st.info("No keyphrases found with more than one occurrence to display in tabs.")
|
271 |
-
|
272 |
-
st.divider()
|
273 |
-
|
274 |
-
experiment = None
|
275 |
-
if comet_initialized:
|
276 |
-
experiment = Experiment(
|
277 |
-
api_key=COMET_API_KEY,
|
278 |
-
workspace=COMET_WORKSPACE,
|
279 |
-
project_name=COMET_PROJECT_NAME,
|
280 |
-
)
|
281 |
-
experiment.log_parameter("input_source_type", source_type)
|
282 |
-
experiment.log_parameter("input_content_length", len(text_for_ner))
|
283 |
-
experiment.log_table("predicted_entities", df)
|
284 |
-
|
285 |
-
st.subheader("Treemap of All Keyphrases", divider="rainbow")
|
286 |
-
fig_treemap = px.treemap(
|
287 |
-
df,
|
288 |
-
path=[px.Constant("all"), 'entity_group', 'word'],
|
289 |
-
values='score',
|
290 |
-
color='word',
|
291 |
-
color_continuous_scale=px.colors.sequential.Plasma
|
292 |
-
)
|
293 |
-
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
294 |
-
st.plotly_chart(fig_treemap, use_container_width=True)
|
295 |
-
|
296 |
-
if comet_initialized and experiment:
|
297 |
-
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
|
298 |
-
|
299 |
-
# --- Download Section ---
|
300 |
-
dfa = pd.DataFrame(
|
301 |
-
data={
|
302 |
-
'Column Name': ['word', 'entity_group', 'score', 'start', 'end'],
|
303 |
-
'Description': [
|
304 |
-
'entity extracted from your text data',
|
305 |
-
'label (tag) assigned to a given extracted entity',
|
306 |
-
'accuracy score; how accurately a tag has been assigned to a given entity',
|
307 |
-
'index of the start of the corresponding entity',
|
308 |
-
'index of the end of the corresponding entity'
|
309 |
-
]
|
310 |
-
}
|
311 |
)
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
|
319 |
-
with stylable_container(
|
320 |
-
key="download_button",
|
321 |
-
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
|
322 |
-
):
|
323 |
-
st.download_button(
|
324 |
-
label="Download zip file",
|
325 |
-
data=buf.getvalue(),
|
326 |
-
file_name="nlpblogs_ner_results.zip",
|
327 |
-
mime="application/zip",
|
328 |
-
)
|
329 |
-
st.divider()
|
330 |
-
else:
|
331 |
-
st.warning("No entities found to generate visualizations.")
|
332 |
-
else:
|
333 |
-
st.warning("No meaningful text found to process. Please enter a URL, upload a text file, or type/paste text.")
|
334 |
except Exception as e:
|
335 |
st.error(f"An unexpected error occurred during processing: {e}")
|
336 |
finally:
|
337 |
-
if
|
338 |
try:
|
|
|
|
|
|
|
|
|
339 |
experiment.end()
|
340 |
except Exception as comet_e:
|
341 |
st.warning(f"Comet ML experiment.end() failed: {comet_e}")
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
st.
|
347 |
-
|
348 |
-
st.warning("Please enter some text, a URL, or upload a file to analyze.")
|
|
|
1 |
import os
|
|
|
2 |
import time
|
3 |
import streamlit as st
|
4 |
import pandas as pd
|
5 |
import io
|
6 |
import plotly.express as px
|
7 |
import zipfile
|
|
|
|
|
8 |
from streamlit_extras.stylable_container import stylable_container
|
|
|
|
|
|
|
9 |
from transformers import pipeline
|
10 |
+
from comet_ml import Experiment
|
11 |
|
12 |
+
# --- App Configuration and Styling ---
|
13 |
+
st.set_page_config(
|
14 |
+
layout="wide",
|
15 |
+
page_title="English Keyphrase"
|
16 |
+
)
|
17 |
|
18 |
st.markdown(
|
19 |
"""
|
20 |
<style>
|
21 |
+
/* ... (your CSS styles here, as they were mostly fine) ... */
|
22 |
.stApp {
|
23 |
background: linear-gradient(135deg, #f0f8ff, #f5f0ff, #fff0f5);
|
24 |
color: #000000;
|
25 |
font-family: 'Inter', sans-serif;
|
26 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
.stButton > button {
|
28 |
background-color: #FF69B4;
|
29 |
color: #FFFFFF;
|
|
|
37 |
box-shadow: 0 6px 8px rgba(0, 0, 0, 0.15);
|
38 |
transform: translateY(-2px);
|
39 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
</style>
|
41 |
""",
|
42 |
unsafe_allow_html=True
|
43 |
)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
# --- Comet ML Setup ---
|
46 |
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
47 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
|
|
51 |
if not comet_initialized:
|
52 |
st.warning("Comet ML not initialized. Check environment variables.")
|
53 |
|
|
|
|
|
|
|
|
|
54 |
# --- UI Header and Notes ---
|
55 |
st.subheader("AcademiaMiner", divider="rainbow")
|
56 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
|
|
57 |
expander = st.expander("**Important notes*")
|
58 |
+
expander.write('''**Named Entities:** This AcademiaMiner extracts keyphrases from English academic and scientific papers.
|
59 |
+
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
60 |
+
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
61 |
+
**Usage Limits:** You can request results unlimited times for one (1) month.
|
62 |
+
**Supported Languages:** English
|
63 |
+
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. For any errors or inquiries, please contact us at info@nlpblogs.com''')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
with st.sidebar:
|
66 |
st.write("Use the following code to embed the AcademiaMiner web app on your website. Feel free to adjust the width and height values to fit your page.")
|
67 |
code = '''
|
68 |
+
<iframe src="https://aiecosystem-business-core.hf.space" frameborder="0" width="850" height="450"></iframe>
|
|
|
|
|
|
|
|
|
|
|
69 |
'''
|
70 |
st.code(code, language="html")
|
71 |
st.text("")
|
|
|
74 |
st.subheader("🚀 Ready to build your own NER Web App?", divider="rainbow")
|
75 |
st.link_button("NER Builder", "https://nlpblogs.com", type="primary")
|
76 |
|
77 |
+
# --- Model Loading ---
|
78 |
@st.cache_resource
|
79 |
def load_ner_model():
|
80 |
+
"""Loads the keyphrase extraction model and caches it."""
|
81 |
try:
|
82 |
+
return pipeline(
|
83 |
+
"token-classification",
|
84 |
+
model="ml6team/keyphrase-extraction-kbir-inspec",
|
85 |
+
aggregation_strategy="max"
|
86 |
+
)
|
87 |
except Exception as e:
|
88 |
+
st.error(f"Failed to load NER model: {e}")
|
89 |
st.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
model = load_ner_model()
|
|
|
|
|
92 |
|
93 |
+
# --- Main App Logic ---
|
94 |
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area')
|
95 |
|
96 |
def clear_text():
|
97 |
"""Clears the text area."""
|
98 |
st.session_state['my_text_area'] = ""
|
99 |
+
st.session_state.text_processed = False
|
100 |
|
101 |
st.button("Clear text", on_click=clear_text)
|
102 |
|
|
|
103 |
if st.button("Results"):
|
|
|
104 |
if not text.strip():
|
105 |
+
st.warning("Please enter some text to extract keyphrases.")
|
106 |
else:
|
107 |
+
start_time_overall = time.time()
|
108 |
+
|
109 |
+
# Initialize Comet ML experiment at the start
|
110 |
+
experiment = None
|
111 |
+
if comet_initialized:
|
112 |
+
try:
|
113 |
+
experiment = Experiment(
|
114 |
+
api_key=COMET_API_KEY,
|
115 |
+
workspace=COMET_WORKSPACE,
|
116 |
+
project_name=COMET_PROJECT_NAME,
|
117 |
+
)
|
118 |
+
except Exception as e:
|
119 |
+
st.warning(f"Could not initialize Comet ML experiment: {e}")
|
120 |
+
experiment = None
|
121 |
+
|
122 |
+
try:
|
123 |
+
with st.spinner("Analyzing text...", ):
|
124 |
+
# The pipeline model returns a list of dictionaries.
|
125 |
+
entities = model(text)
|
126 |
+
|
127 |
+
data = []
|
128 |
for entity in entities:
|
129 |
+
# 'ml6team/keyphrase-extraction-kbir-inspec' model doesn't have 'entity_group'
|
130 |
+
# It just uses 'label'
|
131 |
+
data.append({
|
132 |
+
'word': entity['word'],
|
133 |
+
'label': entity['label'],
|
134 |
+
'score': entity['score'],
|
135 |
+
'start': entity['start'],
|
136 |
+
'end': entity['end']
|
137 |
+
})
|
138 |
+
|
139 |
+
if not data:
|
140 |
+
st.warning("No keyphrases found in the text.")
|
141 |
+
st.stop()
|
142 |
+
|
143 |
+
df = pd.DataFrame(data)
|
144 |
+
|
145 |
+
# --- Data Cleaning and Processing ---
|
146 |
+
pattern = r'[^\w\s]'
|
147 |
+
df['word'] = df['word'].replace(pattern, '', regex=True)
|
148 |
+
df = df.replace('', 'Unknown')
|
149 |
+
|
150 |
+
# --- All Extracted Keyphrases ---
|
151 |
+
st.subheader("All Extracted Keyphrases", divider="rainbow")
|
152 |
+
st.dataframe(df, use_container_width=True)
|
153 |
+
with st.expander("See Glossary of tags"):
|
154 |
+
st.write('''
|
155 |
+
**word**: ['keyphrase extracted from your text data']
|
156 |
+
**score**: ['accuracy score; how accurately a tag has been assigned']
|
157 |
+
**label**: ['label (tag) assigned to a given extracted keyphrase']
|
158 |
+
**start**: ['index of the start of the corresponding entity']
|
159 |
+
**end**: ['index of the end of the corresponding entity']
|
160 |
+
''')
|
161 |
+
|
162 |
+
# --- Most Frequent Keyphrases ---
|
163 |
+
st.subheader("Most Frequent Keyphrases", divider="rainbow")
|
164 |
+
word_counts = df['word'].value_counts().reset_index()
|
165 |
+
word_counts.columns = ['word', 'count']
|
166 |
+
df_frequent = word_counts.sort_values(by='count', ascending=False).head(15)
|
167 |
+
|
168 |
+
if not df_frequent.empty:
|
169 |
+
tab1, tab2 = st.tabs(["Table", "Chart"])
|
170 |
+
with tab1:
|
171 |
+
st.dataframe(df_frequent, use_container_width=True)
|
172 |
+
with tab2:
|
173 |
+
fig_frequent_bar = px.bar(
|
174 |
+
df_frequent,
|
175 |
+
x='count',
|
176 |
+
y='word',
|
177 |
+
orientation='h',
|
178 |
+
title='Top Frequent Keyphrases by Count',
|
179 |
+
color='count',
|
180 |
+
color_continuous_scale=px.colors.sequential.Viridis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
)
|
182 |
+
fig_frequent_bar.update_layout(yaxis={'categoryorder': 'total ascending'})
|
183 |
+
st.plotly_chart(fig_frequent_bar, use_container_width=True)
|
184 |
+
if experiment:
|
185 |
+
experiment.log_figure(figure=fig_frequent_bar, figure_name="frequent_keyphrases_bar_chart")
|
186 |
+
else:
|
187 |
+
st.info("No keyphrases found with more than one occurrence.")
|
188 |
+
|
189 |
+
# --- Treemap of All Keyphrases ---
|
190 |
+
st.subheader("Treemap of All Keyphrases", divider="rainbow")
|
191 |
+
# Use 'label' instead of 'entity_group'
|
192 |
+
fig_treemap = px.treemap(
|
193 |
+
df,
|
194 |
+
path=[px.Constant("all"), 'label', 'word'],
|
195 |
+
values='score',
|
196 |
+
color='word',
|
197 |
+
color_continuous_scale=px.colors.sequential.Plasma
|
198 |
+
)
|
199 |
+
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
200 |
+
st.plotly_chart(fig_treemap, use_container_width=True)
|
201 |
+
if experiment:
|
202 |
+
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
|
203 |
+
|
204 |
+
# --- Download Section ---
|
205 |
+
dfa = pd.DataFrame(
|
206 |
+
data={
|
207 |
+
'Column Name': ['word', 'label', 'score', 'start', 'end'],
|
208 |
+
'Description': [
|
209 |
+
'keyphrase extracted from your text data',
|
210 |
+
'label (tag) assigned to a given keyphrase',
|
211 |
+
'accuracy score; how accurately a tag has been assigned',
|
212 |
+
'index of the start of the corresponding entity',
|
213 |
+
'index of the end of the corresponding entity'
|
214 |
+
]
|
215 |
+
}
|
216 |
+
)
|
217 |
+
buf = io.BytesIO()
|
218 |
+
with zipfile.ZipFile(buf, "w") as myzip:
|
219 |
+
myzip.writestr("Summary_of_results.csv", df.to_csv(index=False))
|
220 |
+
myzip.writestr("Most_frequent_keyphrases.csv", df_frequent.to_csv(index=False))
|
221 |
+
myzip.writestr("Glossary_of_tags.csv", dfa.to_csv(index=False))
|
222 |
+
|
223 |
+
with stylable_container(
|
224 |
+
key="download_button",
|
225 |
+
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
|
226 |
+
):
|
227 |
+
st.download_button(
|
228 |
+
label="Download zip file",
|
229 |
+
data=buf.getvalue(),
|
230 |
+
file_name="nlpblogs_ner_results.zip",
|
231 |
+
mime="application/zip",
|
232 |
+
)
|
233 |
+
st.divider()
|
234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
except Exception as e:
|
236 |
st.error(f"An unexpected error occurred during processing: {e}")
|
237 |
finally:
|
238 |
+
if experiment:
|
239 |
try:
|
240 |
+
# Log parameters and tables before ending the experiment
|
241 |
+
experiment.log_parameter("input_source_type", "text_area")
|
242 |
+
experiment.log_parameter("input_content_length", len(text))
|
243 |
+
experiment.log_table("predicted_entities", df)
|
244 |
experiment.end()
|
245 |
except Exception as comet_e:
|
246 |
st.warning(f"Comet ML experiment.end() failed: {comet_e}")
|
247 |
+
|
248 |
+
# Show elapsed time
|
249 |
+
end_time_overall = time.time()
|
250 |
+
elapsed_time_overall = end_time_overall - start_time_overall
|
251 |
+
st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.")
|
252 |
+
|
|