Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +22 -20
src/streamlit_app.py
CHANGED
@@ -75,15 +75,21 @@ st.markdown(
|
|
75 |
|
76 |
# --- Page Configuration and UI Elements ---
|
77 |
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
78 |
-
st.subheader("Business Core", divider="
|
79 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
80 |
expander = st.expander("**Important notes**")
|
81 |
-
expander.write("""**Named Entities:** This
|
|
|
82 |
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
|
|
83 |
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
|
|
84 |
**Usage Limits:** You can request results unlimited times for one (1) month.
|
|
|
85 |
**Supported Languages:** English
|
86 |
-
|
|
|
|
|
87 |
For any errors or inquiries, please contact us at [email protected]""")
|
88 |
|
89 |
with st.sidebar:
|
@@ -100,7 +106,7 @@ with st.sidebar:
|
|
100 |
st.text("")
|
101 |
st.text("")
|
102 |
st.divider()
|
103 |
-
st.subheader("π Ready to build your own NER Web App?", divider="
|
104 |
st.link_button("NER Builder", "https://nlpblogs.com", type="primary")
|
105 |
|
106 |
# --- Comet ML Setup ---
|
@@ -163,10 +169,6 @@ category_mapping = {
|
|
163 |
|
164 |
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
# --- Model Loading ---
|
171 |
@st.cache_resource
|
172 |
def load_ner_model():
|
@@ -212,7 +214,7 @@ if st.button("Results"):
|
|
212 |
experiment.log_parameter("input_text", text)
|
213 |
experiment.log_table("predicted_entities", df)
|
214 |
|
215 |
-
st.subheader("Grouped Entities by Category", divider = "
|
216 |
|
217 |
# Create tabs for each category
|
218 |
category_names = sorted(list(category_mapping.keys()))
|
@@ -240,9 +242,9 @@ if st.button("Results"):
|
|
240 |
st.divider()
|
241 |
|
242 |
# Tree map
|
243 |
-
st.subheader("Tree map", divider = "
|
244 |
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
245 |
-
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#
|
246 |
st.plotly_chart(fig_treemap)
|
247 |
|
248 |
# Pie and Bar charts
|
@@ -251,26 +253,26 @@ if st.button("Results"):
|
|
251 |
col1, col2 = st.columns(2)
|
252 |
|
253 |
with col1:
|
254 |
-
st.subheader("Pie chart", divider = "
|
255 |
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
256 |
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
257 |
fig_pie.update_layout(
|
258 |
-
paper_bgcolor='#
|
259 |
-
plot_bgcolor='#
|
260 |
)
|
261 |
st.plotly_chart(fig_pie)
|
262 |
|
263 |
with col2:
|
264 |
-
st.subheader("Bar chart", divider = "
|
265 |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
266 |
fig_pie.update_layout(
|
267 |
-
paper_bgcolor='#
|
268 |
-
plot_bgcolor='#
|
269 |
)
|
270 |
st.plotly_chart(fig_bar)
|
271 |
|
272 |
# Most Frequent Entities
|
273 |
-
st.subheader("Most Frequent Entities", divider="
|
274 |
word_counts = df['text'].value_counts().reset_index()
|
275 |
word_counts.columns = ['Entity', 'Count']
|
276 |
repeating_entities = word_counts[word_counts['Count'] > 1]
|
@@ -278,8 +280,8 @@ if st.button("Results"):
|
|
278 |
st.dataframe(repeating_entities, use_container_width=True)
|
279 |
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
|
280 |
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'},
|
281 |
-
paper_bgcolor='#
|
282 |
-
plot_bgcolor='#
|
283 |
st.plotly_chart(fig_repeating_bar)
|
284 |
else:
|
285 |
st.warning("No entities were found that occur more than once.")
|
|
|
75 |
|
76 |
# --- Page Configuration and UI Elements ---
|
77 |
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
78 |
+
st.subheader("Business Core", divider="orange")
|
79 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
80 |
expander = st.expander("**Important notes**")
|
81 |
+
expander.write("""**Named Entities:** This Business Core predicts twenty-six (26) labels: "Person", "Contact", "Company", "Department", "Vendor", "Client", "Office", "Warehouse", "Address", "City", "State", "Country", "Date", "Time", "Time Period", "Revenue", "Cost", "Budget", "Invoice Number", "Product", "Service", "Task", "Project", "Status", "Asset", "Transaction"
|
82 |
+
|
83 |
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
84 |
+
|
85 |
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
86 |
+
|
87 |
**Usage Limits:** You can request results unlimited times for one (1) month.
|
88 |
+
|
89 |
**Supported Languages:** English
|
90 |
+
|
91 |
+
*Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
|
92 |
+
|
93 |
For any errors or inquiries, please contact us at [email protected]""")
|
94 |
|
95 |
with st.sidebar:
|
|
|
106 |
st.text("")
|
107 |
st.text("")
|
108 |
st.divider()
|
109 |
+
st.subheader("π Ready to build your own NER Web App?", divider="orange")
|
110 |
st.link_button("NER Builder", "https://nlpblogs.com", type="primary")
|
111 |
|
112 |
# --- Comet ML Setup ---
|
|
|
169 |
|
170 |
|
171 |
|
|
|
|
|
|
|
|
|
172 |
# --- Model Loading ---
|
173 |
@st.cache_resource
|
174 |
def load_ner_model():
|
|
|
214 |
experiment.log_parameter("input_text", text)
|
215 |
experiment.log_table("predicted_entities", df)
|
216 |
|
217 |
+
st.subheader("Grouped Entities by Category", divider = "orange")
|
218 |
|
219 |
# Create tabs for each category
|
220 |
category_names = sorted(list(category_mapping.keys()))
|
|
|
242 |
st.divider()
|
243 |
|
244 |
# Tree map
|
245 |
+
st.subheader("Tree map", divider = "orange")
|
246 |
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
247 |
+
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#FFF8F0', plot_bgcolor='#FFF8F0')
|
248 |
st.plotly_chart(fig_treemap)
|
249 |
|
250 |
# Pie and Bar charts
|
|
|
253 |
col1, col2 = st.columns(2)
|
254 |
|
255 |
with col1:
|
256 |
+
st.subheader("Pie chart", divider = "orange")
|
257 |
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
258 |
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
259 |
fig_pie.update_layout(
|
260 |
+
paper_bgcolor='#FFF8F0',
|
261 |
+
plot_bgcolor='#FFF8F0'
|
262 |
)
|
263 |
st.plotly_chart(fig_pie)
|
264 |
|
265 |
with col2:
|
266 |
+
st.subheader("Bar chart", divider = "orange")
|
267 |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
268 |
fig_pie.update_layout(
|
269 |
+
paper_bgcolor='#FFF8F0',
|
270 |
+
plot_bgcolor='#FFF8F0'
|
271 |
)
|
272 |
st.plotly_chart(fig_bar)
|
273 |
|
274 |
# Most Frequent Entities
|
275 |
+
st.subheader("Most Frequent Entities", divider="orange")
|
276 |
word_counts = df['text'].value_counts().reset_index()
|
277 |
word_counts.columns = ['Entity', 'Count']
|
278 |
repeating_entities = word_counts[word_counts['Count'] > 1]
|
|
|
280 |
st.dataframe(repeating_entities, use_container_width=True)
|
281 |
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
|
282 |
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'},
|
283 |
+
paper_bgcolor='#FFF8F0',
|
284 |
+
plot_bgcolor='#FFF8F0')
|
285 |
st.plotly_chart(fig_repeating_bar)
|
286 |
else:
|
287 |
st.warning("No entities were found that occur more than once.")
|